YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness

    Source: Journal of Mechanical Design:;2012:;volume( 134 ):;issue: 006::page 61009
    Author:
    Guangbo Hao
    ,
    Xianwen Kong
    DOI: 10.1115/1.4006653
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There is an increasing need for compact large-range XY compliant parallel manipulators (CPMs). This paper deals with a novel large-range XY CPM with enhanced out-of-plane stiffness (LRXYCPMEOS). Unlike most of XY CPMs based on the 4-PP (P: prismatic) decoupled parallel mechanism, the LRXYCPMEOS is obtained from a 4-PP-E (E: planar) decoupled parallel mechanism by replacing each P joint with a planar double multibeam parallelogram module (DMBPM) and the E joint with a spatial double multibeam parallelogram module. Normalized analytical models for the LRXYCPMEOS are then presented. As a case study, an LRXYCPMEOS with a motion range 10 mm × 10 mm in both positive directions is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, actuation force check, and buckling check. The analytical models are compared with the finite element analysis (FEA) models. Finally, dynamics consideration, manufacturability, out-of-plane stiffness, and result interpretation are discussed. It is shown that the LRXYCPMEOS in the case study has the following merits: large range of motion up to 20 mm × 20 mm, enhanced out-of-plane stiffness which is approximately 7.1 times larger than the associated planar XY CPM without the spatial compliant leg, and well-constrained parasitic motion with the parasitic translation along the Z-axis less than 2 × 10−4 mm, the parasitic rotation about the X-axis/Y-axis less than 2 × 10−6 rad, and the parasitic rotation about the Z-axis below 1 × 10−6 rad.
    keyword(s): Force , Motion , Modeling , Stiffness , Finite element analysis , Displacement , Buckling AND Manipulators ,
    • Download: (1.803Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149775
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorGuangbo Hao
    contributor authorXianwen Kong
    date accessioned2017-05-09T00:53:09Z
    date available2017-05-09T00:53:09Z
    date copyrightJune, 2012
    date issued2012
    identifier issn1050-0472
    identifier otherJMDEDB-27963#061009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149775
    description abstractThere is an increasing need for compact large-range XY compliant parallel manipulators (CPMs). This paper deals with a novel large-range XY CPM with enhanced out-of-plane stiffness (LRXYCPMEOS). Unlike most of XY CPMs based on the 4-PP (P: prismatic) decoupled parallel mechanism, the LRXYCPMEOS is obtained from a 4-PP-E (E: planar) decoupled parallel mechanism by replacing each P joint with a planar double multibeam parallelogram module (DMBPM) and the E joint with a spatial double multibeam parallelogram module. Normalized analytical models for the LRXYCPMEOS are then presented. As a case study, an LRXYCPMEOS with a motion range 10 mm × 10 mm in both positive directions is presented in detail, covering the geometrical parameter determination, performance characteristics analysis, actuation force check, and buckling check. The analytical models are compared with the finite element analysis (FEA) models. Finally, dynamics consideration, manufacturability, out-of-plane stiffness, and result interpretation are discussed. It is shown that the LRXYCPMEOS in the case study has the following merits: large range of motion up to 20 mm × 20 mm, enhanced out-of-plane stiffness which is approximately 7.1 times larger than the associated planar XY CPM without the spatial compliant leg, and well-constrained parasitic motion with the parasitic translation along the Z-axis less than 2 × 10−4 mm, the parasitic rotation about the X-axis/Y-axis less than 2 × 10−6 rad, and the parasitic rotation about the Z-axis below 1 × 10−6 rad.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Large-Range XY Compliant Parallel Manipulator With Enhanced Out-of-Plane Stiffness
    typeJournal Paper
    journal volume134
    journal issue6
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4006653
    journal fristpage61009
    identifier eissn1528-9001
    keywordsForce
    keywordsMotion
    keywordsModeling
    keywordsStiffness
    keywordsFinite element analysis
    keywordsDisplacement
    keywordsBuckling AND Manipulators
    treeJournal of Mechanical Design:;2012:;volume( 134 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian