contributor author | Toru Matsushima | |
contributor author | Kazuhiro Izui | |
contributor author | Shinji Nishiwaki | |
date accessioned | 2017-05-09T00:53:09Z | |
date available | 2017-05-09T00:53:09Z | |
date copyright | June, 2012 | |
date issued | 2012 | |
identifier issn | 1050-0472 | |
identifier other | JMDEDB-27963#061008_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/149774 | |
description abstract | Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Furthermore, brake squeal occurs due to the changes in unpredictable factors such as the friction coefficient, contact stiffness, and pressure distribution along the contact surfaces of the brake disk and brake pads. This paper proposes a conceptual design method for disk brake systems that specifically aims to reduce the occurrence of low frequency brake squeal at frequencies below 5 kHz by appropriately modifying the shapes of brake system components to obtain designs that are robust against changes in the above unpredictable factors. A design example is provided and the validity of the obtained optimal solutions is then verified through real-world experiments. The proposed optimization method can provide useful design information at the conceptual design stage during the development of robust disk brake systems that maximize the performance while minimizing the occurrence of brake squeal despite the presence of unpredictable usage factors. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Conceptual Design Method for Reducing Brake Squeal in Disk Brake Systems Considering Unpredictable Usage Factors | |
type | Journal Paper | |
journal volume | 134 | |
journal issue | 6 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.4006326 | |
journal fristpage | 61008 | |
identifier eissn | 1528-9001 | |
keywords | Design | |
keywords | Disks | |
keywords | Brakes | |
keywords | Friction AND Stiffness | |
tree | Journal of Mechanical Design:;2012:;volume( 134 ):;issue: 006 | |
contenttype | Fulltext | |