| contributor author | Alan Kruizenga | |
| contributor author | Hongzhi Li | |
| contributor author | Mark Anderson | |
| contributor author | Michael Corradini | |
| date accessioned | 2017-05-09T00:52:03Z | |
| date available | 2017-05-09T00:52:03Z | |
| date copyright | August, 2012 | |
| date issued | 2012 | |
| identifier issn | 0022-1481 | |
| identifier other | JHTRAO-27947#081802_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/149384 | |
| description abstract | Competitive cycles must have a minimal initial cost and be inherently efficient. Currently, the supercritical carbon dioxide (S-CO2 ) Brayton cycle is under consideration for these very reasons. This paper examines one major challenge of the S-CO2 Brayton cycle: the complexity of heat exchanger design due to the vast change in thermophysical properties near a fluid’s critical point. Turbulent heat transfer experiments using carbon dioxide, with Reynolds numbers up to 100 K, were performed at pressures of 7.5–10.1 MPa, at temperatures spanning the pseudocritical temperature. The geometry employed nine semicircular, parallel channels to aide in the understanding of current printed circuit heat exchanger designs. Computational fluid dynamics was performed using FLUENT and compared to the experimental results. Existing correlations were compared, and predicted the data within 20% for pressures of 8.1 MPa and 10.2 MPa. However, near the critical pressure and temperature, heat transfer correlations tended to over predict the heat transfer behavior. It was found that FLUENT gave the best prediction of heat transfer results, provided meshing was at a y+ ∼ 1. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels | |
| type | Journal Paper | |
| journal volume | 134 | |
| journal issue | 8 | |
| journal title | Journal of Heat Transfer | |
| identifier doi | 10.1115/1.4006108 | |
| journal fristpage | 81802 | |
| identifier eissn | 1528-8943 | |
| keywords | Temperature | |
| keywords | Heat transfer | |
| keywords | Channels (Hydraulic engineering) | |
| keywords | Carbon dioxide | |
| keywords | Cooling | |
| keywords | Pressure AND Flow (Dynamics) | |
| tree | Journal of Heat Transfer:;2012:;volume( 134 ):;issue: 008 | |
| contenttype | Fulltext | |