YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Actuation Using Nanocomposites: A Computational Analysis

    Source: Journal of Heat Transfer:;2012:;volume( 134 ):;issue: 011::page 112401
    Author:
    Y. Xu
    ,
    G. Li
    DOI: 10.1115/1.4007128
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we propose the use of Si/Ge nanocomposite materials to improve the performance of microthermal actuators. Nanocomposites with a high electrical to thermal conductivity ratio can facilitate a rapid temperature change within a short distance, enabling a high temperature increase in a large region of the actuator beams. The total structural thermal expansion and, consequently, the actuation distance can be increased significantly. A top-down quasi-continuum multiscale model is presented for the computational analysis of nanocomposite based thermal actuators. In the multiscale model, the thermo-mechanical response of the actuator due to Joule heating is modeled using classical continuum theories, while the thermal and electrical properties of doped Si and Si/Ge nanocomposite materials are obtained from atomistic level descriptions. An iterative procedure is carried out between the calculations at the two length scales until a self-consistent solution is obtained. Numerical results indicate that incorporating Si/Ge nanocomposites in thermal actuators can significantly increase their energy efficiency and mechanical performance. In addition, parametric studies show that the size of the nanocomposite region and atomic percentage of the material components have significant effects on the overall performance of the actuators.
    keyword(s): Temperature , Thermal conductivity , Nanocomposites , Actuators AND Phonons ,
    • Download: (1.653Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Actuation Using Nanocomposites: A Computational Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149318
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorY. Xu
    contributor authorG. Li
    date accessioned2017-05-09T00:51:55Z
    date available2017-05-09T00:51:55Z
    date copyrightNovember, 2012
    date issued2012
    identifier issn0022-1481
    identifier otherJHTRAO-926057#112401_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149318
    description abstractIn this paper, we propose the use of Si/Ge nanocomposite materials to improve the performance of microthermal actuators. Nanocomposites with a high electrical to thermal conductivity ratio can facilitate a rapid temperature change within a short distance, enabling a high temperature increase in a large region of the actuator beams. The total structural thermal expansion and, consequently, the actuation distance can be increased significantly. A top-down quasi-continuum multiscale model is presented for the computational analysis of nanocomposite based thermal actuators. In the multiscale model, the thermo-mechanical response of the actuator due to Joule heating is modeled using classical continuum theories, while the thermal and electrical properties of doped Si and Si/Ge nanocomposite materials are obtained from atomistic level descriptions. An iterative procedure is carried out between the calculations at the two length scales until a self-consistent solution is obtained. Numerical results indicate that incorporating Si/Ge nanocomposites in thermal actuators can significantly increase their energy efficiency and mechanical performance. In addition, parametric studies show that the size of the nanocomposite region and atomic percentage of the material components have significant effects on the overall performance of the actuators.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Actuation Using Nanocomposites: A Computational Analysis
    typeJournal Paper
    journal volume134
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4007128
    journal fristpage112401
    identifier eissn1528-8943
    keywordsTemperature
    keywordsThermal conductivity
    keywordsNanocomposites
    keywordsActuators AND Phonons
    treeJournal of Heat Transfer:;2012:;volume( 134 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian