YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Model for Understanding Spatial Temperature and Species Distributions in Internal-Reforming Solid Oxide Fuel Cells

    Source: Journal of Fuel Cell Science and Technology:;2012:;volume( 009 ):;issue: 004::page 41012
    Author:
    Brendan Shaffer
    ,
    Jacob Brouwer
    DOI: 10.1115/1.4006477
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Direct internal reformation of methane in solid oxide fuel cells (SOFCs) leads to two major performance and longevity challenges: thermal stresses in the cell due to large temperature gradients and coke formation on the anode. A simplified quasi-two-dimensional direct internal reformation SOFC (DIR-SOFC) dynamic model was developed for investigation of the effects of various parameters and assumptions on the temperature gradients across the cell. The model consists of 64 nodes, each containing four control volumes: the positive electrode, electrolyte, negative electrode (PEN), interconnect, anode gas, and cathode gas. Within each node the corresponding conservation and chemical and electrochemical reaction rate equations are solved. The model simulates the counter-flow configuration since previous research (Achenbach, 1994, “Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack,” J. Power Sources, 49 (1), p. 333) has shown this configuration to yield the smallest temperature differentials for DIR-SOFCs. Steady state simulations revealed several results where the temperature difference across the cell was considerably affected by operating conditions and cell design parameters. Increasing the performance of the cell through modifications to the electrochemical model to simulate modern cell performance produced significant changes in the cell temperature differential. Improved cell performance led to a maximum increase in the temperature differential across the cell of 31 K. An increase in the interconnect thickness from 3.5 to 4.5 mm was shown to reduce the PEN temperature difference about 50 K. Variation of other physical parameters such as the thermal conductivity of the interconnect and the rib width also showed significant effects on the temperature distribution. The sensitivity of temperature distribution to heat losses was also studied, showing a considerable effect near the fuel and air inlets. Increased heat transfer from the cell edges resulted in severe temperature gradients approaching 160 K/cm. The dynamic capability of the spatially resolved dynamic model was also demonstrated for a 45% power increase perturbation while maintaining constant fuel and air utilizations.
    keyword(s): Temperature , Anodes , Fuels , Solid oxide fuel cells , Current density , Equations , Flow (Dynamics) , Dynamic models , Methane AND Heat losses ,
    • Download: (2.949Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Model for Understanding Spatial Temperature and Species Distributions in Internal-Reforming Solid Oxide Fuel Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149227
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorBrendan Shaffer
    contributor authorJacob Brouwer
    date accessioned2017-05-09T00:51:38Z
    date available2017-05-09T00:51:38Z
    date copyrightAugust, 2012
    date issued2012
    identifier issn2381-6872
    identifier otherJFCSAU-28955#041012_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149227
    description abstractDirect internal reformation of methane in solid oxide fuel cells (SOFCs) leads to two major performance and longevity challenges: thermal stresses in the cell due to large temperature gradients and coke formation on the anode. A simplified quasi-two-dimensional direct internal reformation SOFC (DIR-SOFC) dynamic model was developed for investigation of the effects of various parameters and assumptions on the temperature gradients across the cell. The model consists of 64 nodes, each containing four control volumes: the positive electrode, electrolyte, negative electrode (PEN), interconnect, anode gas, and cathode gas. Within each node the corresponding conservation and chemical and electrochemical reaction rate equations are solved. The model simulates the counter-flow configuration since previous research (Achenbach, 1994, “Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack,” J. Power Sources, 49 (1), p. 333) has shown this configuration to yield the smallest temperature differentials for DIR-SOFCs. Steady state simulations revealed several results where the temperature difference across the cell was considerably affected by operating conditions and cell design parameters. Increasing the performance of the cell through modifications to the electrochemical model to simulate modern cell performance produced significant changes in the cell temperature differential. Improved cell performance led to a maximum increase in the temperature differential across the cell of 31 K. An increase in the interconnect thickness from 3.5 to 4.5 mm was shown to reduce the PEN temperature difference about 50 K. Variation of other physical parameters such as the thermal conductivity of the interconnect and the rib width also showed significant effects on the temperature distribution. The sensitivity of temperature distribution to heat losses was also studied, showing a considerable effect near the fuel and air inlets. Increased heat transfer from the cell edges resulted in severe temperature gradients approaching 160 K/cm. The dynamic capability of the spatially resolved dynamic model was also demonstrated for a 45% power increase perturbation while maintaining constant fuel and air utilizations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Model for Understanding Spatial Temperature and Species Distributions in Internal-Reforming Solid Oxide Fuel Cells
    typeJournal Paper
    journal volume9
    journal issue4
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4006477
    journal fristpage41012
    identifier eissn2381-6910
    keywordsTemperature
    keywordsAnodes
    keywordsFuels
    keywordsSolid oxide fuel cells
    keywordsCurrent density
    keywordsEquations
    keywordsFlow (Dynamics)
    keywordsDynamic models
    keywordsMethane AND Heat losses
    treeJournal of Fuel Cell Science and Technology:;2012:;volume( 009 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian