YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Microchannel Boundary Conditions and Porosity Variation on Diffusion Layer Saturation and Transport in Fuel Cells

    Source: Journal of Fuel Cell Science and Technology:;2012:;volume( 009 ):;issue: 004::page 41008
    Author:
    Kenneth M. Armijo
    ,
    Van P. Carey
    DOI: 10.1115/1.4006476
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Polymer electrolyte membrane (PEM) fuel cell flooding can be detrimental to energy generation performance due to its role in reducing gas diffusion layer (GDL) oxygen transport. Previous transport models have made use of a zero-saturation boundary condition at the GDL/oxygen gas channel (GC) interface. However, the physical accuracy of this boundary condition is still unclear and further investigation is needed to lead to a more robust model of the GDL saturation distribution. This work provides a half-cell two-phase transport model for saturation as well as liquid water and gaseous oxygen pressure distributions. This work focuses on the impact of nonzero saturation boundary conditions at the GDL/GC interface, and its impact on GDL two-phase transport. Saturation boundary conditions at this location are determined based on GDL interfacial liquid coverage of water droplets that form as a result of product water that diffuses through the porous medium and blocks oxygen transport paths. The results indicate that nonzero saturation boundary conditions, which are a consequence of GDL/GC liquid droplet coverage, increase cathode saturation by as much as 4% and 12% for low and high current density conditions respectively. It is also shown that cathode saturation dependence on the interfacial liquid coverage fraction α is reduced with an increase in porosity ɛ. As ɛ increases from 0.3 to 0.5, the cathode saturation difference is reduced by 22%. This investigation also evaluated the inclusion and optimization of a microporous layer (MPL) within the half-cell system. It was found that cathode saturation reductions were more significant for increasing MPL porosity than for GDL porosity. The results suggest that its inclusion was able to reduce cathode saturation by up to 90% at the GDL/MPL interface for near zero α values.
    keyword(s): Boundary-value problems , Porosity , Water , Gas diffusion layers , Oxygen , Fuel cells , Channels (Hydraulic engineering) , Microchannels , Current density AND Diffusion (Physics) ,
    • Download: (1.569Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Microchannel Boundary Conditions and Porosity Variation on Diffusion Layer Saturation and Transport in Fuel Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149222
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorKenneth M. Armijo
    contributor authorVan P. Carey
    date accessioned2017-05-09T00:51:37Z
    date available2017-05-09T00:51:37Z
    date copyrightAugust, 2012
    date issued2012
    identifier issn2381-6872
    identifier otherJFCSAU-28955#041008_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149222
    description abstractPolymer electrolyte membrane (PEM) fuel cell flooding can be detrimental to energy generation performance due to its role in reducing gas diffusion layer (GDL) oxygen transport. Previous transport models have made use of a zero-saturation boundary condition at the GDL/oxygen gas channel (GC) interface. However, the physical accuracy of this boundary condition is still unclear and further investigation is needed to lead to a more robust model of the GDL saturation distribution. This work provides a half-cell two-phase transport model for saturation as well as liquid water and gaseous oxygen pressure distributions. This work focuses on the impact of nonzero saturation boundary conditions at the GDL/GC interface, and its impact on GDL two-phase transport. Saturation boundary conditions at this location are determined based on GDL interfacial liquid coverage of water droplets that form as a result of product water that diffuses through the porous medium and blocks oxygen transport paths. The results indicate that nonzero saturation boundary conditions, which are a consequence of GDL/GC liquid droplet coverage, increase cathode saturation by as much as 4% and 12% for low and high current density conditions respectively. It is also shown that cathode saturation dependence on the interfacial liquid coverage fraction α is reduced with an increase in porosity ɛ. As ɛ increases from 0.3 to 0.5, the cathode saturation difference is reduced by 22%. This investigation also evaluated the inclusion and optimization of a microporous layer (MPL) within the half-cell system. It was found that cathode saturation reductions were more significant for increasing MPL porosity than for GDL porosity. The results suggest that its inclusion was able to reduce cathode saturation by up to 90% at the GDL/MPL interface for near zero α values.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Microchannel Boundary Conditions and Porosity Variation on Diffusion Layer Saturation and Transport in Fuel Cells
    typeJournal Paper
    journal volume9
    journal issue4
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4006476
    journal fristpage41008
    identifier eissn2381-6910
    keywordsBoundary-value problems
    keywordsPorosity
    keywordsWater
    keywordsGas diffusion layers
    keywordsOxygen
    keywordsFuel cells
    keywordsChannels (Hydraulic engineering)
    keywordsMicrochannels
    keywordsCurrent density AND Diffusion (Physics)
    treeJournal of Fuel Cell Science and Technology:;2012:;volume( 009 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian