YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Shear-Driven Fluid Motion Using Oscillating Boundaries

    Source: Journal of Fluids Engineering:;2012:;volume( 134 ):;issue: 005::page 51203
    Author:
    Md. Shakhawath Hossain
    ,
    Nihad E. Daidzic
    DOI: 10.1115/1.4006362
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A classical Stokes’ second problem has been known for a long time and represents one of the few exact solutions of nonlinear Navier-Stokes equations. However, oscillatory flow in a semi-infinite domain of Newtonian fluid under harmonic boundary excitation only leads to fluid wind-milling back and forth in close wall vicinity. In this study, we are presenting the mathematical model and the numerical simulations of the Newtonian fluid and the shear-thinning non-Newtonian blood-mimicking fluid flow. Positive flow rates were obtained by periodic yet nonharmonic oscillatory motion of one or two infinite boundary flat walls. The oscillatory flows in semi-infinite or finite 2D geometry with sawtooth or periodic rectified-sine boundary conditions are presented. Rheological human blood models used were: Power-Law, Sisko, Carreau, and Herschel-Bulkley. A one-dimensional time-dependent nonlinear coupled conservative diffusion-type boundary layer equations for mass, linear momentum, and energy were solved using the finite-differences method with finite-volume discretization. It was possible to test the accuracy of the in-house developed computational programs with the few isothermal flow analytical solutions and with the celebrated classical Stokes’ first and second problems. Positive flow rates were achieved in various configurations and in absence of the adverse pressure gradients. Body forces, such as gravity, were neglected. The calculations utilizing in-phase sawtooth and rectified-sine wall excitations resulted in respectable net flow which stabilizes and becomes quasi-steady, starting from rest, after three to ten periods depending on the fluid rheology. It was assumed that rapid return stroke of the wall actuator resulted in total wall slip while forward wall motion existed with no-slip boundary condition. Shear “driving” and “driven” fluid regions were identified. The shear-thinning fluid rheology delivered many interesting results, such as pluglike flow. Constructive interference of diffusive penetration layers from multiple flat surfaces could be used as practical pumping mechanism in micro-scales.
    keyword(s): Oscillations , Flow (Dynamics) , Fluids , Motion , Shear (Mechanics) , Water , Blood , Geometry AND Viscosity ,
    • Download: (1.107Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Shear-Driven Fluid Motion Using Oscillating Boundaries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149138
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorMd. Shakhawath Hossain
    contributor authorNihad E. Daidzic
    date accessioned2017-05-09T00:51:20Z
    date available2017-05-09T00:51:20Z
    date copyrightMay, 2012
    date issued2012
    identifier issn0098-2202
    identifier otherJFEGA4-27531#051203_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149138
    description abstractA classical Stokes’ second problem has been known for a long time and represents one of the few exact solutions of nonlinear Navier-Stokes equations. However, oscillatory flow in a semi-infinite domain of Newtonian fluid under harmonic boundary excitation only leads to fluid wind-milling back and forth in close wall vicinity. In this study, we are presenting the mathematical model and the numerical simulations of the Newtonian fluid and the shear-thinning non-Newtonian blood-mimicking fluid flow. Positive flow rates were obtained by periodic yet nonharmonic oscillatory motion of one or two infinite boundary flat walls. The oscillatory flows in semi-infinite or finite 2D geometry with sawtooth or periodic rectified-sine boundary conditions are presented. Rheological human blood models used were: Power-Law, Sisko, Carreau, and Herschel-Bulkley. A one-dimensional time-dependent nonlinear coupled conservative diffusion-type boundary layer equations for mass, linear momentum, and energy were solved using the finite-differences method with finite-volume discretization. It was possible to test the accuracy of the in-house developed computational programs with the few isothermal flow analytical solutions and with the celebrated classical Stokes’ first and second problems. Positive flow rates were achieved in various configurations and in absence of the adverse pressure gradients. Body forces, such as gravity, were neglected. The calculations utilizing in-phase sawtooth and rectified-sine wall excitations resulted in respectable net flow which stabilizes and becomes quasi-steady, starting from rest, after three to ten periods depending on the fluid rheology. It was assumed that rapid return stroke of the wall actuator resulted in total wall slip while forward wall motion existed with no-slip boundary condition. Shear “driving” and “driven” fluid regions were identified. The shear-thinning fluid rheology delivered many interesting results, such as pluglike flow. Constructive interference of diffusive penetration layers from multiple flat surfaces could be used as practical pumping mechanism in micro-scales.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Shear-Driven Fluid Motion Using Oscillating Boundaries
    typeJournal Paper
    journal volume134
    journal issue5
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4006362
    journal fristpage51203
    identifier eissn1528-901X
    keywordsOscillations
    keywordsFlow (Dynamics)
    keywordsFluids
    keywordsMotion
    keywordsShear (Mechanics)
    keywordsWater
    keywordsBlood
    keywordsGeometry AND Viscosity
    treeJournal of Fluids Engineering:;2012:;volume( 134 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian