YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Materials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis

    Source: Journal of Engineering Materials and Technology:;2012:;volume( 134 ):;issue: 001::page 10911
    Author:
    Dongsheng Li
    ,
    Xin Sun
    ,
    Mohammed A. Khaleel
    DOI: 10.1115/1.4005417
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A microstructure-based finite element analysis model was developed to predict the effective elastic property of cellulose nanowhisker reinforced all-cellulose composite. Analysis was based on the microstructure synthesized with assumption on volume fraction, size, and orientation distribution of cellulose nanowhiskers. Simulation results demonstrated some interesting discovery: With the increase of aspect ratio, the effective elastic modulus increases in isotropic microstructure. The elastic property anisotropy increases with the aspect ratio and anisotropy of nanowhisker orientation. Simulation results from microstructure-based finite element analysis agree well with experimental results, comparing with other homogenization methods: upper bound, lower bound, and self-consistent models. Capturing the anisotropic elastic property, the microstructure-based finite element analysis demonstrated the capability in guiding materials design to improve effective properties.
    keyword(s): Composite materials , Elastic moduli , Finite element analysis AND Anisotropy ,
    • Download: (2.439Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Materials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/149017
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorDongsheng Li
    contributor authorXin Sun
    contributor authorMohammed A. Khaleel
    date accessioned2017-05-09T00:50:55Z
    date available2017-05-09T00:50:55Z
    date copyrightJanuary, 2012
    date issued2012
    identifier issn0094-4289
    identifier otherJEMTA8-27149#010911_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/149017
    description abstractA microstructure-based finite element analysis model was developed to predict the effective elastic property of cellulose nanowhisker reinforced all-cellulose composite. Analysis was based on the microstructure synthesized with assumption on volume fraction, size, and orientation distribution of cellulose nanowhiskers. Simulation results demonstrated some interesting discovery: With the increase of aspect ratio, the effective elastic modulus increases in isotropic microstructure. The elastic property anisotropy increases with the aspect ratio and anisotropy of nanowhisker orientation. Simulation results from microstructure-based finite element analysis agree well with experimental results, comparing with other homogenization methods: upper bound, lower bound, and self-consistent models. Capturing the anisotropic elastic property, the microstructure-based finite element analysis demonstrated the capability in guiding materials design to improve effective properties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaterials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4005417
    journal fristpage10911
    identifier eissn1528-8889
    keywordsComposite materials
    keywordsElastic moduli
    keywordsFinite element analysis AND Anisotropy
    treeJournal of Engineering Materials and Technology:;2012:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian