Show simple item record

contributor authorMichelle I. Valentino
contributor authorLucky V. Tran
contributor authorMark Ricklick
contributor authorJ. S. Kapat
date accessioned2017-05-09T00:50:11Z
date available2017-05-09T00:50:11Z
date copyrightJuly, 2012
date issued2012
identifier issn1528-8919
identifier otherJETPEZ-27198#072303_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148798
description abstractThis study presents an investigation of the heat transfer augmentation for the purpose of obtaining high effectiveness recuperative heat exchangers for waste heat recovery. The focus of the present work is in the fully developed portion of a 2:1 aspect ratio rectangular channel characterized by dimples applied to one wall at channel Reynolds numbers of 10,000, 18,000, 28,000, and 36,000. The dimples are applied in a staggered-row, racetrack configuration. In this study, a segmented copper test section was embedded with insulated dimples in order to isolate the heat transfer within the dimpled feature. The insulated material used to create a dimpled geometry isolates the heat transfer within the dimple cavity from the heat transfer augmentation on the surrounding smooth walls promoted by the flow disturbances induced by the dimple. Results for three different geometries are presented, a small dimple feature, a large dimple, and a double dimple. The results of this study indicate that there is significant heat transfer augmentation even on the nonfeatured portion of the channel wall resulting from the secondary flows created by the features. Overall heat transfer augmentations for the small dimples are between 13–27%, large dimples between 33–54%, and double dimples between 22–39%, with the highest heat transfer augmentation at the lowest Reynolds number for all three dimple geometries tested. Heat transfer within the dimple was shown to be less than that of the surrounding flat regions at low Reynolds numbers. Results for each dimple geometry show that dimples are capable of promoting heat transfer over the entire bottom wall surface as well as the side walls; thus the effects are not confined to within the dimple cavity.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Study of Heat Transfer Augmentation for Recuperative Heat Exchangers: Comparison Between Three Dimple Geometries
typeJournal Paper
journal volume134
journal issue7
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4005990
journal fristpage72303
identifier eissn0742-4795
keywordsFlow (Dynamics)
keywordsHeat transfer
keywordsChannels (Hydraulic engineering)
keywordsReynolds number
keywordsHeat exchangers AND Copper
treeJournal of Engineering for Gas Turbines and Power:;2012:;volume( 134 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record