YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of the Intra-Abdominal Pressure and the Center of Segmental Body Mass on the Lumbar Spine Mechanics – A Computational Parametric Study

    Source: Journal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 001::page 11009
    Author:
    W. M. Park
    ,
    S. Wang
    ,
    Y. H. Kim
    ,
    K. B. Wood
    ,
    J. A. Sim
    ,
    G. Li
    DOI: 10.1115/1.4005541
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Determination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0 kPa and the COMs were 10 mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4 ± 8.9 mm anterior to intervertebral disc (IVD) centers to 40.5 ± 3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78 ± 0.11 Body weight (BW) to 0.31 ± 0.07 BW) and overall muscle force (from 349.3 ± 57.7 N to 221.5 ± 84.2 N). Anterior movement of the COMs from −30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1 ± 8.3 mm posterior to IVD centers to 7.8 ± 6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78 ± 0.1 BW to 0.93 ± 0.1 BW) and muscle force (from 348.9 ± 47.7 N to 452.9 ± 58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.
    keyword(s): Force , Pressure , Motion , Stress , Muscle , Lumbar spine , Weight (Mass) , Optimization , Spine mechanics , Biomechanics , Physiology , Simulation AND Rotation ,
    • Download: (1.915Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of the Intra-Abdominal Pressure and the Center of Segmental Body Mass on the Lumbar Spine Mechanics – A Computational Parametric Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148305
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorW. M. Park
    contributor authorS. Wang
    contributor authorY. H. Kim
    contributor authorK. B. Wood
    contributor authorJ. A. Sim
    contributor authorG. Li
    date accessioned2017-05-09T00:48:40Z
    date available2017-05-09T00:48:40Z
    date copyrightJanuary, 2012
    date issued2012
    identifier issn0148-0731
    identifier otherJBENDY-27246#011009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148305
    description abstractDetermination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0 kPa and the COMs were 10 mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4 ± 8.9 mm anterior to intervertebral disc (IVD) centers to 40.5 ± 3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78 ± 0.11 Body weight (BW) to 0.31 ± 0.07 BW) and overall muscle force (from 349.3 ± 57.7 N to 221.5 ± 84.2 N). Anterior movement of the COMs from −30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1 ± 8.3 mm posterior to IVD centers to 7.8 ± 6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78 ± 0.1 BW to 0.93 ± 0.1 BW) and muscle force (from 348.9 ± 47.7 N to 452.9 ± 58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of the Intra-Abdominal Pressure and the Center of Segmental Body Mass on the Lumbar Spine Mechanics – A Computational Parametric Study
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4005541
    journal fristpage11009
    identifier eissn1528-8951
    keywordsForce
    keywordsPressure
    keywordsMotion
    keywordsStress
    keywordsMuscle
    keywordsLumbar spine
    keywordsWeight (Mass)
    keywordsOptimization
    keywordsSpine mechanics
    keywordsBiomechanics
    keywordsPhysiology
    keywordsSimulation AND Rotation
    treeJournal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian