YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon

    Source: Journal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 003::page 31007
    Author:
    Kristin S. Miller
    ,
    Lena Edelstein
    ,
    Brianne K. Connizzo
    ,
    Louis J. Soslowsky
    DOI: 10.1115/1.4006340
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Repeatedly and consistently measuring the mechanical properties of tendon is important but presents a challenge. Preconditioning can provide tendons with a consistent loading history to make comparisons between groups from mechanical testing experiments. However, the specific mechanisms occurring during preconditioning are unknown. Previous studies have suggested that microstructural changes, such as collagen fiber re-alignment, may be a result of preconditioning. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing using a testing system integrated with a polarized light setup, consisting of a backlight, 90 deg-offset rotating polarizer sheets on each side of the test sample, and a digital camera, in a rat supraspinatus tendon model, and corresponding mechanical properties are measured. Local circular variance values are compared throughout the mechanical test to determine if and where collagen fiber re-alignment occurred. The inhomogeneity of the tendon is examined by comparing local circular variance values, optical moduli and optical transition strain values. Although the largest amount of collagen fiber re-alignment was found during preconditioning, significant re-alignment was also demonstrated in the toe and linear regions of the mechanical test. No significant changes in re-alignment were seen during stress relaxation. The insertion site of the supraspinatus tendon demonstrated a lower linear modulus and a more disorganized collagen fiber distribution throughout all mechanical testing points compared to the tendon midsubstance. This study identified a correlation between collagen fiber re-alignment and preconditioning and suggests that collagen fiber re-alignment may be a potential mechanism of preconditioning and merits further investigation. In particular, the conditions necessary for collagen fibers to re-orient away from the direction of loading and the dependency of collagen reorganization on its initial distribution must be examined.
    keyword(s): Fibers , Relaxation (Physics) , Stress , Mechanical testing , Tendons AND Mechanical properties ,
    • Download: (481.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148276
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorKristin S. Miller
    contributor authorLena Edelstein
    contributor authorBrianne K. Connizzo
    contributor authorLouis J. Soslowsky
    date accessioned2017-05-09T00:48:34Z
    date available2017-05-09T00:48:34Z
    date copyrightMarch, 2012
    date issued2012
    identifier issn0148-0731
    identifier otherJBENDY-28991#031007_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148276
    description abstractRepeatedly and consistently measuring the mechanical properties of tendon is important but presents a challenge. Preconditioning can provide tendons with a consistent loading history to make comparisons between groups from mechanical testing experiments. However, the specific mechanisms occurring during preconditioning are unknown. Previous studies have suggested that microstructural changes, such as collagen fiber re-alignment, may be a result of preconditioning. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing using a testing system integrated with a polarized light setup, consisting of a backlight, 90 deg-offset rotating polarizer sheets on each side of the test sample, and a digital camera, in a rat supraspinatus tendon model, and corresponding mechanical properties are measured. Local circular variance values are compared throughout the mechanical test to determine if and where collagen fiber re-alignment occurred. The inhomogeneity of the tendon is examined by comparing local circular variance values, optical moduli and optical transition strain values. Although the largest amount of collagen fiber re-alignment was found during preconditioning, significant re-alignment was also demonstrated in the toe and linear regions of the mechanical test. No significant changes in re-alignment were seen during stress relaxation. The insertion site of the supraspinatus tendon demonstrated a lower linear modulus and a more disorganized collagen fiber distribution throughout all mechanical testing points compared to the tendon midsubstance. This study identified a correlation between collagen fiber re-alignment and preconditioning and suggests that collagen fiber re-alignment may be a potential mechanism of preconditioning and merits further investigation. In particular, the conditions necessary for collagen fibers to re-orient away from the direction of loading and the dependency of collagen reorganization on its initial distribution must be examined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon
    typeJournal Paper
    journal volume134
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4006340
    journal fristpage31007
    identifier eissn1528-8951
    keywordsFibers
    keywordsRelaxation (Physics)
    keywordsStress
    keywordsMechanical testing
    keywordsTendons AND Mechanical properties
    treeJournal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian