YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Potassium Titanyl Phosphate Laser Tissue Ablation: Development and Experimental Validation of a New Numerical Model

    Source: Journal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 010::page 101002
    Author:
    Hossam Elkhalil
    ,
    Taner Akkin
    ,
    John Pearce
    ,
    John Bischof
    DOI: 10.1115/1.4007452
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., “ablation” in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation Eab ). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm3 /s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.
    keyword(s): Lasers , Ablation (Vaporization technology) AND Biological tissues ,
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Potassium Titanyl Phosphate Laser Tissue Ablation: Development and Experimental Validation of a New Numerical Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/148192
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorHossam Elkhalil
    contributor authorTaner Akkin
    contributor authorJohn Pearce
    contributor authorJohn Bischof
    date accessioned2017-05-09T00:48:20Z
    date available2017-05-09T00:48:20Z
    date copyrightOctober, 2012
    date issued2012
    identifier issn0148-0731
    identifier otherJBENDY-29002#101002_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/148192
    description abstractThe photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., “ablation” in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation Eab ). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm3 /s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePotassium Titanyl Phosphate Laser Tissue Ablation: Development and Experimental Validation of a New Numerical Model
    typeJournal Paper
    journal volume134
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4007452
    journal fristpage101002
    identifier eissn1528-8951
    keywordsLasers
    keywordsAblation (Vaporization technology) AND Biological tissues
    treeJournal of Biomechanical Engineering:;2012:;volume( 134 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian