YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 001::page 11010
    Author:
    Matthew Bryant
    ,
    Ephrahim Garcia
    DOI: 10.1115/1.4002788
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes a novel piezoelectric energy harvesting device driven by aeroelastic flutter vibrations of a simple pin connected flap and beam. The system is subject to a modal convergence flutter response above a critical wind speed and then oscillates in a limit cycle at higher wind speeds. A linearized analytical model of the device is derived to include the effects of the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system. A stability analysis of this model is presented to determine the frequency and wind speed at the onset of the flutter instability, which dictates the cut-in conditions for energy harvesting. In order to estimate the electrical output of the energy harvester, the amplitude and frequency of the flutter limit cycle are also investigated. The limit cycle behavior is simulated in the time domain with a semi-empirical nonlinear model that accounts for the effects of the dynamic stall over the flap at large deflections. Wind tunnel test results are presented to determine the empirical aerodynamic model coefficients and to characterize the power output and flutter frequency of the energy harvester as functions of incident wind speed.
    keyword(s): Wind velocity , Flutter (Aerodynamics) , Cycles , Deflection , Aerodynamics , Modeling AND Flow (Dynamics) ,
    • Download: (696.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Testing of a Novel Aeroelastic Flutter Energy Harvester

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147995
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorMatthew Bryant
    contributor authorEphrahim Garcia
    date accessioned2017-05-09T00:47:50Z
    date available2017-05-09T00:47:50Z
    date copyrightFebruary, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28911#011010_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147995
    description abstractThis paper proposes a novel piezoelectric energy harvesting device driven by aeroelastic flutter vibrations of a simple pin connected flap and beam. The system is subject to a modal convergence flutter response above a critical wind speed and then oscillates in a limit cycle at higher wind speeds. A linearized analytical model of the device is derived to include the effects of the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system. A stability analysis of this model is presented to determine the frequency and wind speed at the onset of the flutter instability, which dictates the cut-in conditions for energy harvesting. In order to estimate the electrical output of the energy harvester, the amplitude and frequency of the flutter limit cycle are also investigated. The limit cycle behavior is simulated in the time domain with a semi-empirical nonlinear model that accounts for the effects of the dynamic stall over the flap at large deflections. Wind tunnel test results are presented to determine the empirical aerodynamic model coefficients and to characterize the power output and flutter frequency of the energy harvester as functions of incident wind speed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Testing of a Novel Aeroelastic Flutter Energy Harvester
    typeJournal Paper
    journal volume133
    journal issue1
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4002788
    journal fristpage11010
    identifier eissn1528-8927
    keywordsWind velocity
    keywordsFlutter (Aerodynamics)
    keywordsCycles
    keywordsDeflection
    keywordsAerodynamics
    keywordsModeling AND Flow (Dynamics)
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian