YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reduced Order Models of Mistuned Cracked Bladed Disks

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 005::page 51014
    Author:
    Olguta Marinescu
    ,
    Bogdan I. Epureanu
    ,
    Mihaela Banu
    DOI: 10.1115/1.4003940
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology that can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates, which allows for an effective model reduction based on (fixed-interface Craig–Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning, which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.
    keyword(s): Fracture (Materials) , Disks , Blades , Modeling AND Eigenvalues ,
    • Download: (964.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reduced Order Models of Mistuned Cracked Bladed Disks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147927
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorOlguta Marinescu
    contributor authorBogdan I. Epureanu
    contributor authorMihaela Banu
    date accessioned2017-05-09T00:47:43Z
    date available2017-05-09T00:47:43Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28915#051014_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147927
    description abstractPredicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology that can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates, which allows for an effective model reduction based on (fixed-interface Craig–Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning, which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReduced Order Models of Mistuned Cracked Bladed Disks
    typeJournal Paper
    journal volume133
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4003940
    journal fristpage51014
    identifier eissn1528-8927
    keywordsFracture (Materials)
    keywordsDisks
    keywordsBlades
    keywordsModeling AND Eigenvalues
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian