YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Effects of the PCB Motion on the Response of Microstructures Under Mechanical Shock

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006::page 61019
    Author:
    Abdallah H. Ramini
    ,
    Mohammad I. Younis
    ,
    Ronald Miles
    DOI: 10.1115/1.4005219
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Microelectromechanical systems (MEMS) are often used in portable electronic devices that are vulnerable to mechanical shock or impact, such as that induced due to accidental drops on the ground. This work presents a modeling and simulation effort to investigate the effect of the vibration of a printed circuit board (PCB) on the dynamics of MEMS microstructures when subjected to shock. Two models are investigated. In the first model, the PCB is modeled as an Euler-Bernoulli beam to which a lumped model of a MEMS device is attached. In the second model, a special case of a cantilever microbeam is studied and modeled as a distributed-parameter system, which is attached to the PCB. These lumped-distributed and distributed-distributed models are discretized into ordinary differential equations, using the Galerkin method, which are then integrated numerically over time to simulate the dynamic response. Results of the two models are compared against each other for the case of a cantilever microbeam and also compared to the predictions of a finite-element model using the software ANSYS. The influence of the higher order vibration modes of the PCB, the location of the MEMS device on the PCB, the electrostatic forces, damping, and shock pulse duration are presented. It is found that neglecting the effects of the higher order modes of the PCB and the location of the MEMS device can cause incorrect predictions of the response of the microstructure and may lead to failure of the device. It is noted also that, for some PCB designs, the response of the microstructure can be amplified significantly causing early dynamic pull-in and hence possibly failure of the device.
    • Download: (1.937Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Effects of the PCB Motion on the Response of Microstructures Under Mechanical Shock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147905
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorAbdallah H. Ramini
    contributor authorMohammad I. Younis
    contributor authorRonald Miles
    date accessioned2017-05-09T00:47:41Z
    date available2017-05-09T00:47:41Z
    date copyrightDecember, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28916#061019_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147905
    description abstractMicroelectromechanical systems (MEMS) are often used in portable electronic devices that are vulnerable to mechanical shock or impact, such as that induced due to accidental drops on the ground. This work presents a modeling and simulation effort to investigate the effect of the vibration of a printed circuit board (PCB) on the dynamics of MEMS microstructures when subjected to shock. Two models are investigated. In the first model, the PCB is modeled as an Euler-Bernoulli beam to which a lumped model of a MEMS device is attached. In the second model, a special case of a cantilever microbeam is studied and modeled as a distributed-parameter system, which is attached to the PCB. These lumped-distributed and distributed-distributed models are discretized into ordinary differential equations, using the Galerkin method, which are then integrated numerically over time to simulate the dynamic response. Results of the two models are compared against each other for the case of a cantilever microbeam and also compared to the predictions of a finite-element model using the software ANSYS. The influence of the higher order vibration modes of the PCB, the location of the MEMS device on the PCB, the electrostatic forces, damping, and shock pulse duration are presented. It is found that neglecting the effects of the higher order modes of the PCB and the location of the MEMS device can cause incorrect predictions of the response of the microstructure and may lead to failure of the device. It is noted also that, for some PCB designs, the response of the microstructure can be amplified significantly causing early dynamic pull-in and hence possibly failure of the device.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling the Effects of the PCB Motion on the Response of Microstructures Under Mechanical Shock
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4005219
    journal fristpage61019
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian