YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Based Analysis of Coupled Vibrations Due to the Combi-Bearing in Vertical Hydroturbogenerator Rotors

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006::page 61012
    Author:
    Jean-Claude Luneno
    ,
    Rolf Gustavsson
    ,
    Jan-Olov Aidanpää
    DOI: 10.1115/1.4005002
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The studies presented in this paper focus on analyzing how the combined thrust-journal bearing (commonly called combi-bearing) influences the dynamics of hydropower rotors. Thrust bearing is a component used in vertical rotating machinery and shafts designed to transmit thrust. The total axial load is carried by the single thrust bearing. Any design, manufacture, or assembly error in this component (thrust bearing) would certainly influence the functionality of the entire machine. The analyzed combi-bearing is an existing machine component used in the hydropower unit Porjus U9 situated in northern Sweden. This combi-bearing is a fluid-film lubricated tilting-pad thrust and journal bearings combined together. Only linear fluid-film stiffness was taken into account in the model while fluid-film damping and pads inertia effects were not taken into account. The linearized model shows that the combi-bearing couples the rotor’s lateral and angular motions. However, if the thrust bearing’s pads arrangement is not symmetrical or if all the pads are not angularly equidistant the rotor axial and angular motions are also coupled. This last case of coupling will also occur if the thrust bearing equivalent total stiffness is not evenly distributed over the thrust bearing. A defective pad or unequal hydrodynamic pressure distribution on the pads’ surfaces may be the cause. The Porjus U9’s simulation results show that the combi-bearing influences the dynamic behavior of the machine. The rotor motions’ coupling due to combi-bearing changes the system’s natural frequencies and vibration modes.
    • Download: (1.136Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Based Analysis of Coupled Vibrations Due to the Combi-Bearing in Vertical Hydroturbogenerator Rotors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147897
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJean-Claude Luneno
    contributor authorRolf Gustavsson
    contributor authorJan-Olov Aidanpää
    date accessioned2017-05-09T00:47:40Z
    date available2017-05-09T00:47:40Z
    date copyrightDecember, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28916#061012_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147897
    description abstractThe studies presented in this paper focus on analyzing how the combined thrust-journal bearing (commonly called combi-bearing) influences the dynamics of hydropower rotors. Thrust bearing is a component used in vertical rotating machinery and shafts designed to transmit thrust. The total axial load is carried by the single thrust bearing. Any design, manufacture, or assembly error in this component (thrust bearing) would certainly influence the functionality of the entire machine. The analyzed combi-bearing is an existing machine component used in the hydropower unit Porjus U9 situated in northern Sweden. This combi-bearing is a fluid-film lubricated tilting-pad thrust and journal bearings combined together. Only linear fluid-film stiffness was taken into account in the model while fluid-film damping and pads inertia effects were not taken into account. The linearized model shows that the combi-bearing couples the rotor’s lateral and angular motions. However, if the thrust bearing’s pads arrangement is not symmetrical or if all the pads are not angularly equidistant the rotor axial and angular motions are also coupled. This last case of coupling will also occur if the thrust bearing equivalent total stiffness is not evenly distributed over the thrust bearing. A defective pad or unequal hydrodynamic pressure distribution on the pads’ surfaces may be the cause. The Porjus U9’s simulation results show that the combi-bearing influences the dynamic behavior of the machine. The rotor motions’ coupling due to combi-bearing changes the system’s natural frequencies and vibration modes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModel Based Analysis of Coupled Vibrations Due to the Combi-Bearing in Vertical Hydroturbogenerator Rotors
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4005002
    journal fristpage61012
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian