YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Functionally Graded Materials on Resonances of Bending Shafts Under Time-Dependent Axial Loading

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006::page 61005
    Author:
    Arnaldo J. Mazzei
    ,
    Richard A. Scott
    DOI: 10.1115/1.4004605
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of functionally graded materials (FGMs) on resonances of bending shafts under time-dependent axial loading is investigated. The axial load is taken to be a sinusoidal function of time and the shaft is modeled via an Euler–Bernoulli beam approach (pin-pin boundary conditions). The axial load enters the formulation via a “buckling load type” approach. For generality, two distinct particulate models for the FGM are considered, namely, one involving power law variations and another based on a volume fraction approach, for both Young’s modulus and material density. The spatial dependence in the partial differential equation of motion is suppressed by utilizing Galerkin’s method with homogeneous beam mode shapes. To check the accuracy of this approximation, numerical solutions for the boundary value problem represented by the original partial differential equation are obtained using MAPLE® ’s PDE solver. Good agreement (within 5%) was found between the PDE results and the one-mode approximation. The approximation leads to ordinary differential equations that have time-dependent coefficients and are prone to parametric and forced motions instabilities. Hill’s infinite determinant approach is used to study stability. The main focus is on the primary parametric resonance. It was found that in most cases the FGM shafts increase the parametric resonance frequencies substantially, while decreasing the zone thicknesses, both desirable trends. For instance, for an axial load about one-third of the buckling value, an aluminum/silicon carbide shaft, when compared to a pure aluminum shaft, increases the primary parametric resonance by 21% and decreases instabilities by 23%. For one model of FGM, the sensitivity of the results to volume fraction variations is examined and it was found that increasing the volume fraction is not uniformly beneficial. Results for other parametric zones are also presented. Forced resonances are also briefly treated.
    • Download: (1.515Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Functionally Graded Materials on Resonances of Bending Shafts Under Time-Dependent Axial Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147890
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorArnaldo J. Mazzei
    contributor authorRichard A. Scott
    date accessioned2017-05-09T00:47:39Z
    date available2017-05-09T00:47:39Z
    date copyrightDecember, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28916#061005_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147890
    description abstractThe effect of functionally graded materials (FGMs) on resonances of bending shafts under time-dependent axial loading is investigated. The axial load is taken to be a sinusoidal function of time and the shaft is modeled via an Euler–Bernoulli beam approach (pin-pin boundary conditions). The axial load enters the formulation via a “buckling load type” approach. For generality, two distinct particulate models for the FGM are considered, namely, one involving power law variations and another based on a volume fraction approach, for both Young’s modulus and material density. The spatial dependence in the partial differential equation of motion is suppressed by utilizing Galerkin’s method with homogeneous beam mode shapes. To check the accuracy of this approximation, numerical solutions for the boundary value problem represented by the original partial differential equation are obtained using MAPLE® ’s PDE solver. Good agreement (within 5%) was found between the PDE results and the one-mode approximation. The approximation leads to ordinary differential equations that have time-dependent coefficients and are prone to parametric and forced motions instabilities. Hill’s infinite determinant approach is used to study stability. The main focus is on the primary parametric resonance. It was found that in most cases the FGM shafts increase the parametric resonance frequencies substantially, while decreasing the zone thicknesses, both desirable trends. For instance, for an axial load about one-third of the buckling value, an aluminum/silicon carbide shaft, when compared to a pure aluminum shaft, increases the primary parametric resonance by 21% and decreases instabilities by 23%. For one model of FGM, the sensitivity of the results to volume fraction variations is examined and it was found that increasing the volume fraction is not uniformly beneficial. Results for other parametric zones are also presented. Forced resonances are also briefly treated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Functionally Graded Materials on Resonances of Bending Shafts Under Time-Dependent Axial Loading
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4004605
    journal fristpage61005
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian