YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Vibration Damping in a Modified Elastic Wedge of Power-Law Profile

    Source: Journal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006::page 61003
    Author:
    J. Javier Bayod
    DOI: 10.1115/1.4003591
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this research is to evaluate and propose a modified elastic wedge as passive damping system for structural damping. An elastic wedge is a plate whose thickness decreases smoothly toward zero. It has been proposed as an effective passive damping system to reduce structural vibration, especially in the high frequency range. Several authors have researched elastic wedge theory and showed that if the thickness of a plate decreases toward zero following a power law function, the flexural waves traveling in that plate do not suffer reflection along their path. That energy accumulates at the zero thickness edge, which results in a very efficient damping. In practice, manufacturing a zero thickness edge is not possible and a large amount of the wave energy is reflected at the thinner edge. However, when a small quantity of damping material is added on that edge, a very effective damping can be achieved. The damping effectiveness of the elastic wedge increases proportionally to the thinness of the edge for a given quantity of the added damping material. However, manufacturing of an elastic wedge with a very thin edge is economically costly since high precision machining is required. This presents a problem for practical implementation into the manufacturing line. In this paper, a modified elastic wedge is proposed to facilitate manufacturing and to reduce cost so that practical implementation is possible. In the proposed modified elastic wedge, the thin edge has a thickness achievable with conventional tools. Then, to increase its damping effectiveness, the thin edge is extended for some length with constant thickness. Finally, damping material is added on the extended part. Experimental and finite element method (FEM) frequency response analyses were carried out with a modified elastic wedge. The results show that the proposed modified elastic wedge can also achieve very effective vibration damping, especially in the high frequency range, while being manufactured with conventional tools. This method is currently under evaluation for noise reduction in structures of large dimensions, like platelike components of ship structures, or other machinery to reduce vibration and noise emission, and where cost and manufacturing accuracy limit the application of the conventional elastic wedge.
    keyword(s): Damping , Wedges , Finite element model , Vibration , Accelerometers AND Thickness ,
    • Download: (3.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Vibration Damping in a Modified Elastic Wedge of Power-Law Profile

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147887
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorJ. Javier Bayod
    date accessioned2017-05-09T00:47:38Z
    date available2017-05-09T00:47:38Z
    date copyrightDecember, 2011
    date issued2011
    identifier issn1048-9002
    identifier otherJVACEK-28916#061003_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147887
    description abstractThe objective of this research is to evaluate and propose a modified elastic wedge as passive damping system for structural damping. An elastic wedge is a plate whose thickness decreases smoothly toward zero. It has been proposed as an effective passive damping system to reduce structural vibration, especially in the high frequency range. Several authors have researched elastic wedge theory and showed that if the thickness of a plate decreases toward zero following a power law function, the flexural waves traveling in that plate do not suffer reflection along their path. That energy accumulates at the zero thickness edge, which results in a very efficient damping. In practice, manufacturing a zero thickness edge is not possible and a large amount of the wave energy is reflected at the thinner edge. However, when a small quantity of damping material is added on that edge, a very effective damping can be achieved. The damping effectiveness of the elastic wedge increases proportionally to the thinness of the edge for a given quantity of the added damping material. However, manufacturing of an elastic wedge with a very thin edge is economically costly since high precision machining is required. This presents a problem for practical implementation into the manufacturing line. In this paper, a modified elastic wedge is proposed to facilitate manufacturing and to reduce cost so that practical implementation is possible. In the proposed modified elastic wedge, the thin edge has a thickness achievable with conventional tools. Then, to increase its damping effectiveness, the thin edge is extended for some length with constant thickness. Finally, damping material is added on the extended part. Experimental and finite element method (FEM) frequency response analyses were carried out with a modified elastic wedge. The results show that the proposed modified elastic wedge can also achieve very effective vibration damping, especially in the high frequency range, while being manufactured with conventional tools. This method is currently under evaluation for noise reduction in structures of large dimensions, like platelike components of ship structures, or other machinery to reduce vibration and noise emission, and where cost and manufacturing accuracy limit the application of the conventional elastic wedge.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of Vibration Damping in a Modified Elastic Wedge of Power-Law Profile
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4003591
    journal fristpage61003
    identifier eissn1528-8927
    keywordsDamping
    keywordsWedges
    keywordsFinite element model
    keywordsVibration
    keywordsAccelerometers AND Thickness
    treeJournal of Vibration and Acoustics:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian