YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of Mesh-Fed Slot Film Cooling

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 001::page 11022
    Author:
    R. S. Bunker
    DOI: 10.1115/1.4000548
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This investigation demonstrates the potential improvement in adiabatic film effectiveness that can be achieved through the use of mesh-fed surface slot film cooling. Mesh, or in-wall network, cooling is composed of fairly compact arrays of pedestals sized to fit within the limited wall thickness of a turbine airfoil. When the coolant discharge from such a mesh is along a shallow ramp to the airfoil aerodynamic surface (i.e., like an angled film hole), the resulting film effectiveness from this combined geometry can be very high. The in-wall mesh network acts as the structural means for obtaining the slot geometry. In this study, flat plate warm wind tunnel testing has been conducted on two mesh-fed film geometries and compared against data for a row of axial round film holes, as well as a row of shaped diffuser film holes. The mesh-fed geometries are composed of pedestal arrays with height-to-diameter ratios of 0.2 exiting onto 20-deg inclines to the surface. The mesh slot exit film blowing ratios tested ranged from M=0.1 to M=0.7, while round and shaped film hole conditions covered 0.5 to 1.2. The mesh-fed film effectiveness results indicate a performance greater than that of shaped diffuser holes, but less than that of a more idealistic two-dimensional slot film geometry. The mesh-fed film effectiveness was as much as 25% higher than that for shaped holes in the near-hole region of x/Ms<50, and up to 100% greater in the downstream region of x/Ms>50.
    keyword(s): Cooling , Coolants , Flow (Dynamics) , Geometry AND Airfoils ,
    • Download: (1.129Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of Mesh-Fed Slot Film Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147873
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorR. S. Bunker
    date accessioned2017-05-09T00:47:36Z
    date available2017-05-09T00:47:36Z
    date copyrightJanuary, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28767#011022_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147873
    description abstractThis investigation demonstrates the potential improvement in adiabatic film effectiveness that can be achieved through the use of mesh-fed surface slot film cooling. Mesh, or in-wall network, cooling is composed of fairly compact arrays of pedestals sized to fit within the limited wall thickness of a turbine airfoil. When the coolant discharge from such a mesh is along a shallow ramp to the airfoil aerodynamic surface (i.e., like an angled film hole), the resulting film effectiveness from this combined geometry can be very high. The in-wall mesh network acts as the structural means for obtaining the slot geometry. In this study, flat plate warm wind tunnel testing has been conducted on two mesh-fed film geometries and compared against data for a row of axial round film holes, as well as a row of shaped diffuser film holes. The mesh-fed geometries are composed of pedestal arrays with height-to-diameter ratios of 0.2 exiting onto 20-deg inclines to the surface. The mesh slot exit film blowing ratios tested ranged from M=0.1 to M=0.7, while round and shaped film hole conditions covered 0.5 to 1.2. The mesh-fed film effectiveness results indicate a performance greater than that of shaped diffuser holes, but less than that of a more idealistic two-dimensional slot film geometry. The mesh-fed film effectiveness was as much as 25% higher than that for shaped holes in the near-hole region of x/Ms<50, and up to 100% greater in the downstream region of x/Ms>50.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Study of Mesh-Fed Slot Film Cooling
    typeJournal Paper
    journal volume133
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4000548
    journal fristpage11022
    identifier eissn1528-8900
    keywordsCooling
    keywordsCoolants
    keywordsFlow (Dynamics)
    keywordsGeometry AND Airfoils
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian