Show simple item record

contributor authorD. B. Bogy
date accessioned2017-05-09T00:47:25Z
date available2017-05-09T00:47:25Z
date copyrightDecember, 1971
date issued1971
identifier issn0021-8936
identifier otherJAMCAV-25950#911_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147811
description abstractThe plane problem of a crack that terminates at the interface of a bimaterial composite and is loaded on its faces is treated within the two-dimensional theory of elastostatics. The emphasis is placed on determining how the order of the singularity in the stress field at the crack tip depends on the material constants and the angle at which the crack meets the interface. Numerical results are presented through figures showing this dependence on the material parameters for several fixed angles. It is then shown by way of examples how to use these figures to obtain the dependence on the angle for any desired composite. For the two examples chosen, it is found that when the crack is in the weaker constituent the stress singularity is most severe if the crack is tangent to (lies in) the interface; whereas, when the crack is in the stronger constituent a particular angle is associated with the most severe stress singularity for each composite.
publisherThe American Society of Mechanical Engineers (ASME)
titleOn the Plane Elastostatic Problem of a Loaded Crack Terminating at a Material Interface
typeJournal Paper
journal volume38
journal issue4
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.3408975
journal fristpage911
journal lastpage918
identifier eissn1528-9036
keywordsFracture (Materials)
keywordsComposite materials
keywordsStress singularity AND Stress
treeJournal of Applied Mechanics:;1971:;volume( 038 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record