YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Technique for Assessing Turbine Cooling System Performance

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 003::page 31013
    Author:
    S. Luque
    ,
    T. Povey
    DOI: 10.1115/1.4001232
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new experimental technique for the accurate measurement of steady-state metal temperature surface distributions of modern heavily film-cooled turbine vanes has been developed and is described in this paper. The technique is analogous to the thermal paint test but has been designed for fundamental research. The experimental facility consists of an annular sector cascade of high pressure (HP) turbine vanes from a current production engine. Flow conditioning is achieved by using an annular sector of deswirl vanes downstream of the test section, being both connected by a three-dimensionally contoured duct. As a result, a transonic and periodic flow, highly representative of the engine aerodynamic field, is established: Inlet turbulence levels, mainstream Mach and Reynolds numbers, and coolant-to-mainstream total pressure ratio are matched. Since the fully three-dimensional nozzle guide vane (NGV) geometry is used, the correct radial pressure gradient and secondary flow development are simulated and the cooling flow redistribution is engine-realistic. To allow heat transfer measurements to be performed, a mainstream-to-coolant temperature difference (up to 33.5°C) is generated by using two steel-wire mesh heaters, operated in series. NGV surface metal temperatures are measured (between 20°C and 40°C) by wide-band thermochromic liquid crystals. These are calibrated in situ and on a per-pixel basis against vane surface thermocouples, in a heating process that spans the entire color play and during which the turbine vanes can be assumed to slowly follow a succession of isothermal states. Experimental surface distributions of overall cooling effectiveness are presented in this paper. By employing resin vanes of the same geometry and cooling configuration (to implement adiabatic wall thermal boundary conditions) and the transient liquid crystal technique, surface distributions of external heat transfer coefficient and film cooling effectiveness can be acquired. By combining these measurements with those from the metal vanes, the results can be scaled to engine conditions with a good level of accuracy.
    keyword(s): Pressure , Flow (Dynamics) , Temperature , Heat transfer , Cooling , Liquid crystals , Cooling systems , Measurement , Engines , Coolants , Cascades (Fluid dynamics) , Turbines , Thermocouples , Pressure gradient , Metals , Steady state , Geometry , Reynolds number , Turbulence AND Heat transfer coefficients ,
    • Download: (1.700Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Technique for Assessing Turbine Cooling System Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147798
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorS. Luque
    contributor authorT. Povey
    date accessioned2017-05-09T00:47:23Z
    date available2017-05-09T00:47:23Z
    date copyrightJuly, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28774#031013_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147798
    description abstractA new experimental technique for the accurate measurement of steady-state metal temperature surface distributions of modern heavily film-cooled turbine vanes has been developed and is described in this paper. The technique is analogous to the thermal paint test but has been designed for fundamental research. The experimental facility consists of an annular sector cascade of high pressure (HP) turbine vanes from a current production engine. Flow conditioning is achieved by using an annular sector of deswirl vanes downstream of the test section, being both connected by a three-dimensionally contoured duct. As a result, a transonic and periodic flow, highly representative of the engine aerodynamic field, is established: Inlet turbulence levels, mainstream Mach and Reynolds numbers, and coolant-to-mainstream total pressure ratio are matched. Since the fully three-dimensional nozzle guide vane (NGV) geometry is used, the correct radial pressure gradient and secondary flow development are simulated and the cooling flow redistribution is engine-realistic. To allow heat transfer measurements to be performed, a mainstream-to-coolant temperature difference (up to 33.5°C) is generated by using two steel-wire mesh heaters, operated in series. NGV surface metal temperatures are measured (between 20°C and 40°C) by wide-band thermochromic liquid crystals. These are calibrated in situ and on a per-pixel basis against vane surface thermocouples, in a heating process that spans the entire color play and during which the turbine vanes can be assumed to slowly follow a succession of isothermal states. Experimental surface distributions of overall cooling effectiveness are presented in this paper. By employing resin vanes of the same geometry and cooling configuration (to implement adiabatic wall thermal boundary conditions) and the transient liquid crystal technique, surface distributions of external heat transfer coefficient and film cooling effectiveness can be acquired. By combining these measurements with those from the metal vanes, the results can be scaled to engine conditions with a good level of accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Technique for Assessing Turbine Cooling System Performance
    typeJournal Paper
    journal volume133
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4001232
    journal fristpage31013
    identifier eissn1528-8900
    keywordsPressure
    keywordsFlow (Dynamics)
    keywordsTemperature
    keywordsHeat transfer
    keywordsCooling
    keywordsLiquid crystals
    keywordsCooling systems
    keywordsMeasurement
    keywordsEngines
    keywordsCoolants
    keywordsCascades (Fluid dynamics)
    keywordsTurbines
    keywordsThermocouples
    keywordsPressure gradient
    keywordsMetals
    keywordsSteady state
    keywordsGeometry
    keywordsReynolds number
    keywordsTurbulence AND Heat transfer coefficients
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian