YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 003::page 31011
    Author:
    Darius D. Sanders
    ,
    Rolf Sondergaard
    ,
    Marc D. Polanka
    ,
    Walter F. O’Brien
    ,
    Douglas C. Rabe
    DOI: 10.1115/1.4001230
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There is an increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate computational fluid dynamics (CFD) predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model, originally developed by and (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202), was employed for the current Reynolds averaged Navier–Stokes (RANS) CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over low pressure turbine (LPT) blade airfoils with different blade loading characteristics were simulated over a Reynolds number range of 15,000–100,000 and predictions were compared with experimental cascade results. Part I of this paper discusses the prediction methodology that was developed and its validation using a lightly loaded LPT blade airfoil design. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on freestream turbulence intensity with a second-order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the lightly loaded LPT blade cascade geometry. Significant improvements in performance were shown over predictions of conventional RANS turbulence models. Historically, these models cannot adequately predict boundary layer transition.
    keyword(s): Pressure , Flow (Dynamics) , Separation (Technology) , Turbulence , Reynolds number , Boundary layers , Blades , Airfoils , Turbine blades , Computational fluid dynamics , Reynolds-averaged Navier–Stokes equations AND Eddies (Fluid dynamics) ,
    • Download: (1.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147796
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorDarius D. Sanders
    contributor authorRolf Sondergaard
    contributor authorMarc D. Polanka
    contributor authorWalter F. O’Brien
    contributor authorDouglas C. Rabe
    date accessioned2017-05-09T00:47:23Z
    date available2017-05-09T00:47:23Z
    date copyrightJuly, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28774#031011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147796
    description abstractThere is an increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate computational fluid dynamics (CFD) predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model, originally developed by and (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202), was employed for the current Reynolds averaged Navier–Stokes (RANS) CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over low pressure turbine (LPT) blade airfoils with different blade loading characteristics were simulated over a Reynolds number range of 15,000–100,000 and predictions were compared with experimental cascade results. Part I of this paper discusses the prediction methodology that was developed and its validation using a lightly loaded LPT blade airfoil design. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on freestream turbulence intensity with a second-order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the lightly loaded LPT blade cascade geometry. Significant improvements in performance were shown over predictions of conventional RANS turbulence models. Historically, these models cannot adequately predict boundary layer transition.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePredicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology
    typeJournal Paper
    journal volume133
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4001230
    journal fristpage31011
    identifier eissn1528-8900
    keywordsPressure
    keywordsFlow (Dynamics)
    keywordsSeparation (Technology)
    keywordsTurbulence
    keywordsReynolds number
    keywordsBoundary layers
    keywordsBlades
    keywordsAirfoils
    keywordsTurbine blades
    keywordsComputational fluid dynamics
    keywordsReynolds-averaged Navier–Stokes equations AND Eddies (Fluid dynamics)
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian