YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Upstream Step on Flat Plate Film-Cooling Effectiveness Using PSP

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 004::page 41024
    Author:
    Akhilesh P. Rallabandi
    ,
    Joshua Grizzle
    ,
    Je-Chin Han
    DOI: 10.1115/1.4002422
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of a step positioned upstream of a row of film-cooling holes on the film-cooling effectiveness is studied systematically using the steady state pressure sensitive paint technique. The upstream step effect is studied on four separate hole geometries: simple angled (axial angle of 30 deg) and compound angled (axial angle of 30 deg and compound angle of 45 deg) and cylindrical and fan-shaped film-cooling holes. Each plate considered has seven holes, each hole 4 mm in diameter. The plates with cylindrical holes have a spacing of 3 diameters (12 mm) between the centers of two consecutive holes while the fan-shaped holes have a spacing of 3.75 diameters (15 mm). Three different step heights (12.5%d, 25%d, and 37.5%d) are studied. The effect of the width of the step is also studied; the distance of the step upstream of the hole and the positioning of the step downstream of the film-cooling hole. Four separate blowing ratios are reported for all tests: M=0.3, M=0.6, M=1.0, and M=1.5. All studies have been conducted with a mainstream of 25 m/s velocity at an ambient temperature of 22°C. Results indicate an increase in film-cooling effectiveness in the region near the hole due to the upstream step for all the plates considered. This increase due to the step is found to be most significant in the case of compound angled cylindrical holes and least significant in the case of simple angled fan-shaped holes.
    keyword(s): Cooling , Coolants AND Flat plates ,
    • Download: (1.344Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Upstream Step on Flat Plate Film-Cooling Effectiveness Using PSP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147776
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorAkhilesh P. Rallabandi
    contributor authorJoshua Grizzle
    contributor authorJe-Chin Han
    date accessioned2017-05-09T00:47:19Z
    date available2017-05-09T00:47:19Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28776#041024_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147776
    description abstractThe effect of a step positioned upstream of a row of film-cooling holes on the film-cooling effectiveness is studied systematically using the steady state pressure sensitive paint technique. The upstream step effect is studied on four separate hole geometries: simple angled (axial angle of 30 deg) and compound angled (axial angle of 30 deg and compound angle of 45 deg) and cylindrical and fan-shaped film-cooling holes. Each plate considered has seven holes, each hole 4 mm in diameter. The plates with cylindrical holes have a spacing of 3 diameters (12 mm) between the centers of two consecutive holes while the fan-shaped holes have a spacing of 3.75 diameters (15 mm). Three different step heights (12.5%d, 25%d, and 37.5%d) are studied. The effect of the width of the step is also studied; the distance of the step upstream of the hole and the positioning of the step downstream of the film-cooling hole. Four separate blowing ratios are reported for all tests: M=0.3, M=0.6, M=1.0, and M=1.5. All studies have been conducted with a mainstream of 25 m/s velocity at an ambient temperature of 22°C. Results indicate an increase in film-cooling effectiveness in the region near the hole due to the upstream step for all the plates considered. This increase due to the step is found to be most significant in the case of compound angled cylindrical holes and least significant in the case of simple angled fan-shaped holes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Upstream Step on Flat Plate Film-Cooling Effectiveness Using PSP
    typeJournal Paper
    journal volume133
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4002422
    journal fristpage41024
    identifier eissn1528-8900
    keywordsCooling
    keywordsCoolants AND Flat plates
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian