YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 004::page 41012
    Author:
    Wei Chen
    ,
    Jing Ren
    ,
    Hongde Jiang
    DOI: 10.1115/1.4002989
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The ribbed serpentine blade cooling system is a typical configuration in the modern gas turbine airfoil. In this study, experimental and the numerical efforts were carried out to investigate the local heat transfer and pressure drop distribution of a ribbed blade cooling system with different configurations in the turn region. A test rig containing a ribbed rectangular U-duct with a 180 deg round turn was built in Tsinghua University for this study. The transient liquid crystal method was applied to get the heat transfer distribution. Nine test cases with three turn configurations under three Reynolds numbers were carried out in the experiment. Pressure was measured along the duct in order to determine the influence of turning vane configurations on pressure drop. The test cases were also analyzed numerically based on Reynolds-averaged Navier-Stokes (RANS) with three different turbulence models: the k-ε model, the SST reattachment model, and the Omega Reynolds stress (ORS) turbulence model. Both the experimental and numerical results showed a significant influence of the turning vane configuration on the heat transfer and pressure drop in the convective cooling channel. Among the three configurations, the loss coefficient of turn in configuration 2 was lowest due to the introduction of turning vane. Even the ribs were added in the turn region of configuration 3, the loss coefficient and friction factor are reduced by 23% and 17.5%, respectively. Meanwhile, the heat transfer in baseline configuration is still the highest. As the introduction of turning vane, the heat transfer in the region after turn was reduced by 35%. In configuration 3, the heat transfer in the turn region was enhanced by 15% as the ribs installed in the turn region. In the before turn region, the pressure drop and heat transfer was not influenced by the turn configuration. All the turbulence models captured the trend of heat transfer and pressure drop distribution of three test sections correctly, but all provide overpredicted heat transfer results. Among the models, the ORS turbulence model provided the best prediction. While aiming at high heat transfer level and low pressure drop, it is suggested that a suitable turn configuration, especially with the turning vane and/or the ribs, is a promising way to meet the conflicted requirements of the heat transfer and pressure drop in the convective cooling system.
    keyword(s): Flow (Dynamics) , Heat transfer , Ducts , Pressure drop , Turning vanes , Cooling systems , Turbulence , Pressure AND Cooling ,
    • Download: (2.091Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147763
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorWei Chen
    contributor authorJing Ren
    contributor authorHongde Jiang
    date accessioned2017-05-09T00:47:17Z
    date available2017-05-09T00:47:17Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28776#041012_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147763
    description abstractThe ribbed serpentine blade cooling system is a typical configuration in the modern gas turbine airfoil. In this study, experimental and the numerical efforts were carried out to investigate the local heat transfer and pressure drop distribution of a ribbed blade cooling system with different configurations in the turn region. A test rig containing a ribbed rectangular U-duct with a 180 deg round turn was built in Tsinghua University for this study. The transient liquid crystal method was applied to get the heat transfer distribution. Nine test cases with three turn configurations under three Reynolds numbers were carried out in the experiment. Pressure was measured along the duct in order to determine the influence of turning vane configurations on pressure drop. The test cases were also analyzed numerically based on Reynolds-averaged Navier-Stokes (RANS) with three different turbulence models: the k-ε model, the SST reattachment model, and the Omega Reynolds stress (ORS) turbulence model. Both the experimental and numerical results showed a significant influence of the turning vane configuration on the heat transfer and pressure drop in the convective cooling channel. Among the three configurations, the loss coefficient of turn in configuration 2 was lowest due to the introduction of turning vane. Even the ribs were added in the turn region of configuration 3, the loss coefficient and friction factor are reduced by 23% and 17.5%, respectively. Meanwhile, the heat transfer in baseline configuration is still the highest. As the introduction of turning vane, the heat transfer in the region after turn was reduced by 35%. In configuration 3, the heat transfer in the turn region was enhanced by 15% as the ribs installed in the turn region. In the before turn region, the pressure drop and heat transfer was not influenced by the turn configuration. All the turbulence models captured the trend of heat transfer and pressure drop distribution of three test sections correctly, but all provide overpredicted heat transfer results. Among the models, the ORS turbulence model provided the best prediction. While aiming at high heat transfer level and low pressure drop, it is suggested that a suitable turn configuration, especially with the turning vane and/or the ribs, is a promising way to meet the conflicted requirements of the heat transfer and pressure drop in the convective cooling system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
    typeJournal Paper
    journal volume133
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4002989
    journal fristpage41012
    identifier eissn1528-8900
    keywordsFlow (Dynamics)
    keywordsHeat transfer
    keywordsDucts
    keywordsPressure drop
    keywordsTurning vanes
    keywordsCooling systems
    keywordsTurbulence
    keywordsPressure AND Cooling
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian