YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP

    Source: Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 004::page 41011
    Author:
    Lesley M. Wright
    ,
    Stephen T. McClain
    ,
    Michael D. Clemenson
    DOI: 10.1115/1.4002988
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Detailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.25–2.0), freestream turbulence intensity (Tu=1–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10 deg), or simple angle, laidback, fanshaped holes (α=10 deg and γ=10 deg). In all three cases, the film-cooling holes are angled at θ=35 deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.
    keyword(s): Density , Cooling , Coolants , Turbulence , Flow (Dynamics) AND Flat plates ,
    • Download: (1.722Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147762
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLesley M. Wright
    contributor authorStephen T. McClain
    contributor authorMichael D. Clemenson
    date accessioned2017-05-09T00:47:17Z
    date available2017-05-09T00:47:17Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0889-504X
    identifier otherJOTUEI-28776#041011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147762
    description abstractDetailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.25–2.0), freestream turbulence intensity (Tu=1–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10 deg), or simple angle, laidback, fanshaped holes (α=10 deg and γ=10 deg). In all three cases, the film-cooling holes are angled at θ=35 deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
    typeJournal Paper
    journal volume133
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4002988
    journal fristpage41011
    identifier eissn1528-8900
    keywordsDensity
    keywordsCooling
    keywordsCoolants
    keywordsTurbulence
    keywordsFlow (Dynamics) AND Flat plates
    treeJournal of Turbomachinery:;2011:;volume( 133 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian