contributor author | Stephen P. Lynch | |
contributor author | Atul Kohli | |
contributor author | Christopher Lehane | |
contributor author | Karen A. Thole | |
date accessioned | 2017-05-09T00:47:16Z | |
date available | 2017-05-09T00:47:16Z | |
date copyright | October, 2011 | |
date issued | 2011 | |
identifier issn | 0889-504X | |
identifier other | JOTUEI-28776#041003_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/147753 | |
description abstract | Three-dimensional contouring of the compressor and turbine endwalls in a gas turbine engine has been shown to be an effective method of reducing aerodynamic losses by mitigating the strength of the complex vortical structures generated at the endwall. Reductions in endwall heat transfer in the turbine have been also previously measured and reported in literature. In this study, computational fluid dynamics simulations of a turbine blade with and without nonaxisymmetric endwall contouring were compared to experimental measurements of the exit flowfield, endwall heat transfer, and endwall film-cooling. Secondary kinetic energy at the cascade exit was closely predicted with a simulation using the SST k-ω turbulence model. Endwall heat transfer was overpredicted in the passage for both the SST k-ω and realizable k-ε turbulence models, but heat transfer augmentation for a nonaxisymmetric contour relative to a flat endwall showed fair agreement to the experiment. Measured and predicted film-cooling results indicated that the nonaxisymmetric contouring limits the spread of film-cooling flow over the endwall depending on the interaction of the film with the contour geometry. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring | |
type | Journal Paper | |
journal volume | 133 | |
journal issue | 4 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4002951 | |
journal fristpage | 41003 | |
identifier eissn | 1528-8900 | |
keywords | Heat transfer | |
keywords | Cooling | |
keywords | Measurement | |
keywords | Pressure | |
keywords | Turbine blades | |
keywords | Blades | |
keywords | Flow (Dynamics) | |
keywords | Turbulence | |
keywords | Engineering simulation AND Kinetic energy | |
tree | Journal of Turbomachinery:;2011:;volume( 133 ):;issue: 004 | |
contenttype | Fulltext | |