YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elliptical Deformation of a Floating Roof Pontoon Due to Radial Second Mode of Sloshing (Effect of the Geometry of Pontoon Cross-Section on the Hoop Membrane Stress)

    Source: Journal of Pressure Vessel Technology:;2011:;volume( 133 ):;issue: 005::page 51302
    Author:
    M. Utsumi
    ,
    K. Ishida
    DOI: 10.1115/1.4003462
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The radial second mode of sloshing in a circular cylindrical oil storage tank induces an out-of-plane deformation of the floating roof deck. The radial contraction of the deck due to this out-of-plane deformation contains modal components with circumferential wave numbers 0 and 2, thereby causing an elliptical deformation of the pontoon, which encloses the deck. In a previous paper, the stress caused by this elliptical deformation was analyzed by regarding the radial contraction of the deck as an enforced displacement of the whole pontoon. This paper presents an improved method for this stress analysis by considering the radial contraction of the deck as an enforced displacement of the joint between the deck and the pontoon. First, the effectiveness of the previous method in estimating the hoop membrane stress at the joint with the deck is confirmed by comparing the results obtained from the previous and improved method. Next, the improved method is used to predict also the other stress components in each portion of the pontoon. Numerical results reveal that the bending stresses are magnified locally near the joint with the deck and that the hoop membrane stress in the outer portion of the pontoon sensitively depends on the geometry of the cross-section of the pontoon. It is found that the hoop membrane stress near the joint between the outer rim and the top (or bottom) of the pontoon can be significantly reduced by increasing the slope of the top (or bottom) of the pontoon.
    keyword(s): Displacement , Geometry , Membranes , Roofs , Sloshing , Deformation , Stress AND Bending (Stress) ,
    • Download: (815.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elliptical Deformation of a Floating Roof Pontoon Due to Radial Second Mode of Sloshing (Effect of the Geometry of Pontoon Cross-Section on the Hoop Membrane Stress)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147433
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorM. Utsumi
    contributor authorK. Ishida
    date accessioned2017-05-09T00:46:35Z
    date available2017-05-09T00:46:35Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0094-9930
    identifier otherJPVTAS-28550#051302_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147433
    description abstractThe radial second mode of sloshing in a circular cylindrical oil storage tank induces an out-of-plane deformation of the floating roof deck. The radial contraction of the deck due to this out-of-plane deformation contains modal components with circumferential wave numbers 0 and 2, thereby causing an elliptical deformation of the pontoon, which encloses the deck. In a previous paper, the stress caused by this elliptical deformation was analyzed by regarding the radial contraction of the deck as an enforced displacement of the whole pontoon. This paper presents an improved method for this stress analysis by considering the radial contraction of the deck as an enforced displacement of the joint between the deck and the pontoon. First, the effectiveness of the previous method in estimating the hoop membrane stress at the joint with the deck is confirmed by comparing the results obtained from the previous and improved method. Next, the improved method is used to predict also the other stress components in each portion of the pontoon. Numerical results reveal that the bending stresses are magnified locally near the joint with the deck and that the hoop membrane stress in the outer portion of the pontoon sensitively depends on the geometry of the cross-section of the pontoon. It is found that the hoop membrane stress near the joint between the outer rim and the top (or bottom) of the pontoon can be significantly reduced by increasing the slope of the top (or bottom) of the pontoon.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElliptical Deformation of a Floating Roof Pontoon Due to Radial Second Mode of Sloshing (Effect of the Geometry of Pontoon Cross-Section on the Hoop Membrane Stress)
    typeJournal Paper
    journal volume133
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4003462
    journal fristpage51302
    identifier eissn1528-8978
    keywordsDisplacement
    keywordsGeometry
    keywordsMembranes
    keywordsRoofs
    keywordsSloshing
    keywordsDeformation
    keywordsStress AND Bending (Stress)
    treeJournal of Pressure Vessel Technology:;2011:;volume( 133 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian