contributor author | Unnati A. Joshi | |
contributor author | Satish C. Sharma | |
contributor author | S. P. Harsha | |
date accessioned | 2017-05-09T00:46:15Z | |
date available | 2017-05-09T00:46:15Z | |
date copyright | November, 2011 | |
date issued | 2011 | |
identifier issn | 1949-2944 | |
identifier other | JNEMAA-28072#041007_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/147289 | |
description abstract | In this paper, the effective strength and elastic properties of carbon nanotube reinforced composites are evaluated using a representative volume element with a number of carbon nanotubes embedded in the matrix. This concept is used to predict the mechanical properties of multiple, unidirectional, aligned, and also randomly dispersed carbon nanotube reinforced composites. To characterize these nanocomposites, a continuum model has been developed for large-scale analysis. The effective Young’s and shear moduli of the composites are determined using finite element analysis under the effect of elastic deformation. The role of design parameters like length and volume fraction of carbon nanotubes, tensile and shear strength as well as type of loading conditions are analyzed for multiple carbon nanotubes based composites. The discontinuous and continuous types of carbon nanotubes, with aligned and random distribution, are evaluated. The results show that the continuous and aligned carbon nanotubes produce the largest tensile modulus, compared to the discontinuous and aligned as well as discontinuous and randomly oriented carbon nanotubes along the longitudinal direction. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Influence of Dispersion and Alignment of Nanotubes on the Strength and Elasticity of Carbon Nanotubes Reinforced Composites | |
type | Journal Paper | |
journal volume | 2 | |
journal issue | 4 | |
journal title | Journal of Nanotechnology in Engineering and Medicine | |
identifier doi | 10.1115/1.4005664 | |
journal fristpage | 41007 | |
identifier eissn | 1949-2952 | |
keywords | Elasticity | |
keywords | Composite materials | |
keywords | Carbon nanotubes | |
keywords | Nanocomposites | |
keywords | Nanotubes | |
keywords | Stress AND Mechanical properties | |
tree | Journal of Nanotechnology in Engineering and Medicine:;2011:;volume( 002 ):;issue: 004 | |
contenttype | Fulltext | |