YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methods to Prepare Perfusion Fixed Cardiac Specimens for Multimodal Imaging: The Use of Formalin and Agar Gels

    Source: Journal of Medical Devices:;2011:;volume( 005 ):;issue: 002::page 27539
    Author:
    Michael Eggen
    ,
    Michael Bateman
    ,
    Paul A. Iaizzo
    DOI: 10.1115/1.3591396
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent advances in cardiac imaging have resulted in a growing understanding of both the form and function of the heart in vivo. Currently, the primary modalities for cardiac imaging are (1) two-dimensional cardiac ultrasound or echocardiography, (2) computed tomography (CT), and (3) magnetic resonance imaging (MRI). Yet, high resolution imaging with these modalities can be complicated by motion artifacts and long acquisition times resulting in most of the high resolution anatomical cardiac imaging protocols being reserved for ex vivo studies. Our laboratory has had the privilege to obtain fresh human heart specimens for educational and research purposes. These specimens have been perfusion fixed in 10% buffered formalin, by attaching cannulas to the great vessels, so to create a pressure head of approximately 50 mm Hg. The hearts were then suspended in containers and positioned in anatomically correct orientations before being embedded in 0.7% agar gel, at approximately 45 °C. The cooled specimens were then scanned using the aforementioned clinical imaging modalities (2D and 3D echocardiography, CT, and 3T MRI). The stability of the embedded specimen, the physical properties of the gel, and the lack of motion artifacts allows for the acquisition of extremely high resolution images. These images have subsequently been used in the analysis of cardiac anatomies for a variety of pathologic investigations, not possible with current clinical imaging protocols, and/or for high resolution diffusion tensor MR imaging studies (e.g., of fiber orientations in heart failure in swine ventricles). Future work will include investigations as to whether this gelling approach could be used to prepare other organ specimens for such imaging.
    • Download: (33.27Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methods to Prepare Perfusion Fixed Cardiac Specimens for Multimodal Imaging: The Use of Formalin and Agar Gels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/147259
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorMichael Eggen
    contributor authorMichael Bateman
    contributor authorPaul A. Iaizzo
    date accessioned2017-05-09T00:46:13Z
    date available2017-05-09T00:46:13Z
    date copyrightJune, 2011
    date issued2011
    identifier issn1932-6181
    identifier otherJMDOA4-28018#027539_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/147259
    description abstractRecent advances in cardiac imaging have resulted in a growing understanding of both the form and function of the heart in vivo. Currently, the primary modalities for cardiac imaging are (1) two-dimensional cardiac ultrasound or echocardiography, (2) computed tomography (CT), and (3) magnetic resonance imaging (MRI). Yet, high resolution imaging with these modalities can be complicated by motion artifacts and long acquisition times resulting in most of the high resolution anatomical cardiac imaging protocols being reserved for ex vivo studies. Our laboratory has had the privilege to obtain fresh human heart specimens for educational and research purposes. These specimens have been perfusion fixed in 10% buffered formalin, by attaching cannulas to the great vessels, so to create a pressure head of approximately 50 mm Hg. The hearts were then suspended in containers and positioned in anatomically correct orientations before being embedded in 0.7% agar gel, at approximately 45 °C. The cooled specimens were then scanned using the aforementioned clinical imaging modalities (2D and 3D echocardiography, CT, and 3T MRI). The stability of the embedded specimen, the physical properties of the gel, and the lack of motion artifacts allows for the acquisition of extremely high resolution images. These images have subsequently been used in the analysis of cardiac anatomies for a variety of pathologic investigations, not possible with current clinical imaging protocols, and/or for high resolution diffusion tensor MR imaging studies (e.g., of fiber orientations in heart failure in swine ventricles). Future work will include investigations as to whether this gelling approach could be used to prepare other organ specimens for such imaging.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMethods to Prepare Perfusion Fixed Cardiac Specimens for Multimodal Imaging: The Use of Formalin and Agar Gels
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.3591396
    journal fristpage27539
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2011:;volume( 005 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian