| contributor author | Paul Milenkovic | |
| contributor author | Morgan V. Brown | |
| date accessioned | 2017-05-09T00:46:03Z | |
| date available | 2017-05-09T00:46:03Z | |
| date copyright | May, 2011 | |
| date issued | 2011 | |
| identifier issn | 1942-4302 | |
| identifier other | JMROA6-28011#021012_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/147163 | |
| description abstract | For many single-loop closed-chain mechanisms, mobility may be characterized by the closure of sets in the theory of Lie groups. The four-revolute (4R) Bennett mechanism remains a persistent exception, requiring the formulation and expression of solutions to the loop closure relations, either directly or indirectly through spatial geometric figures. The simpler loop closure relations of the revolute-revolute-revolute-spherical (RRRS) loop, however, place conditions on the mobility of the 4R mechanism. That loop closure in turn may be interpreted as the congruence of a pair of ellipses. This new result is applied to proving the uniqueness of the Bennett mechanism along with deriving conditions where it is free from singularities. Design parameters are also identified for overconstrained RRRS mechanisms with 1DOF that are neither plane nor line symmetric. Such mechanisms, however, place the S-joint along the revolute axis of an underlying Bennett mechanism. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Properties of the Bennett Mechanism Derived From the RRRS Closure Ellipse | |
| type | Journal Paper | |
| journal volume | 3 | |
| journal issue | 2 | |
| journal title | Journal of Mechanisms and Robotics | |
| identifier doi | 10.1115/1.4003844 | |
| journal fristpage | 21012 | |
| identifier eissn | 1942-4310 | |
| keywords | Mechanisms AND Linkages | |
| tree | Journal of Mechanisms and Robotics:;2011:;volume( 003 ):;issue: 002 | |
| contenttype | Fulltext | |