description abstract | Partially compliant mechanisms inherit the attributes of fully compliant and rigid-body linkages and offer simpler, compact design alternatives to accomplish complex kinematic tasks such as tracing large nonsmooth paths. This paper describes qualitative and quantitative criteria that can be employed to select the linkage configuration. The proposed criteria are categorized as general or specific. General criteria pertain to often-used kinematic attributes whereas specific criteria address the application at hand. The veracity and viability of each mechanism are evaluated with respect to compactness, design simplicity, static and dynamic failure, number of rigid-body joints, relative ease of fabrication, and other relevant criteria. Three decision-making techniques, namely, Pugh decision matrix, analytic hierarchy process, and a variant of the Pugh decision matrix are used to perform the evaluation. An example of a displacement-delimited gripper with a prescribed large nonsmooth path is used to illustrate linkage selection. | |