Numerical Analysis of Transport Phenomena in Resistance Spot Welding ProcessSource: Journal of Manufacturing Science and Engineering:;2011:;volume( 133 ):;issue: 003::page 31019DOI: 10.1115/1.4004319Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Resistance spot welding (RSW) is a very complicated process involving electromagnetic, thermal, fluid flow, mechanical, and metallurgical variables. Since weld nugget area is closed and unobservable using experimental means, numerical methods are generally used to reveal the nugget formation mechanism. Traditional RSW models focus on the electrothermal behaviors in the nugget and do not have the ability to model mass transport caused by induced magnetic forces in the molten nugget. In this paper, a multiphysics model, which comprehensively considers the coupling of electric, magnetic, thermal, and flow fields during RSW, temperature-dependent physical properties, and phase transformation, is used to investigate the heat and mass transport laws in the weld nugget and to reveal the interaction of the heat and mass transports and their evolutions. Results showed that strong and complicated mass transport appears in the weld nugget and substantially changed the heat transport laws and, therefore, would be able to substantially affect the hardening, segregation, and residual stress of the weld. Compared with the traditional models which could not consider the mass transport, the multiphysics model proposed in this paper could simulate the RSW process with higher accuracy and more realities.
keyword(s): Flow (Dynamics) , Heat , Temperature , Welding , Magnetic fields , Electrical resistance , Transport phenomena , Numerical analysis AND Metals ,
|
Collections
Show full item record
| contributor author | YongBing Li | |
| contributor author | ZhongQin Lin | |
| contributor author | Qi Shen | |
| contributor author | XinMin Lai | |
| date accessioned | 2017-05-09T00:45:30Z | |
| date available | 2017-05-09T00:45:30Z | |
| date copyright | June, 2011 | |
| date issued | 2011 | |
| identifier issn | 1087-1357 | |
| identifier other | JMSEFK-28465#031019_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/146893 | |
| description abstract | Resistance spot welding (RSW) is a very complicated process involving electromagnetic, thermal, fluid flow, mechanical, and metallurgical variables. Since weld nugget area is closed and unobservable using experimental means, numerical methods are generally used to reveal the nugget formation mechanism. Traditional RSW models focus on the electrothermal behaviors in the nugget and do not have the ability to model mass transport caused by induced magnetic forces in the molten nugget. In this paper, a multiphysics model, which comprehensively considers the coupling of electric, magnetic, thermal, and flow fields during RSW, temperature-dependent physical properties, and phase transformation, is used to investigate the heat and mass transport laws in the weld nugget and to reveal the interaction of the heat and mass transports and their evolutions. Results showed that strong and complicated mass transport appears in the weld nugget and substantially changed the heat transport laws and, therefore, would be able to substantially affect the hardening, segregation, and residual stress of the weld. Compared with the traditional models which could not consider the mass transport, the multiphysics model proposed in this paper could simulate the RSW process with higher accuracy and more realities. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Numerical Analysis of Transport Phenomena in Resistance Spot Welding Process | |
| type | Journal Paper | |
| journal volume | 133 | |
| journal issue | 3 | |
| journal title | Journal of Manufacturing Science and Engineering | |
| identifier doi | 10.1115/1.4004319 | |
| journal fristpage | 31019 | |
| identifier eissn | 1528-8935 | |
| keywords | Flow (Dynamics) | |
| keywords | Heat | |
| keywords | Temperature | |
| keywords | Welding | |
| keywords | Magnetic fields | |
| keywords | Electrical resistance | |
| keywords | Transport phenomena | |
| keywords | Numerical analysis AND Metals | |
| tree | Journal of Manufacturing Science and Engineering:;2011:;volume( 133 ):;issue: 003 | |
| contenttype | Fulltext |