contributor author | Jing Huang | |
contributor author | Mo Yang | |
contributor author | Yuwen Zhang | |
contributor author | J. K. Chen | |
date accessioned | 2017-05-09T00:45:08Z | |
date available | 2017-05-09T00:45:08Z | |
date copyright | March, 2011 | |
date issued | 2011 | |
identifier issn | 0022-1481 | |
identifier other | JHTRAO-27908#031003_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/146748 | |
description abstract | Ultrashort laser pulses can be generated in the form of a pulse train. In this paper, the ultrafast phase change processes of a 1 μm free-standing gold film irradiated by femtosecond laser pulse trains are simulated numerically. A two-temperature model coupled with interface tracking method is developed to describe the ultrafast melting, vaporization, and resolidification processes. To deal with the large span in time scale, variable time steps are adopted. A laser pulse train consists of several pulse bursts with a repetition rate of 0.5–1 MHz. Each pulse burst contains 3–10 pulses with an interval of 50 ps–10 ns. The simulation results show that with such configuration, to achieve the same melting depth, the maximum temperature in the film decreases significantly in comparison to that of a single pulse. Although the total energy depositing on the film will be lifted, more energy will be transferred into the deeper part, instead of accumulating in the subsurface layer. This leads to lower temperature and temperature gradient, which is favorable in laser sintering and laser machining. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Modeling of Ultrafast Phase Change Processes in a Thin Metal Film Irradiated by Femtosecond Laser Pulse Trains | |
type | Journal Paper | |
journal volume | 133 | |
journal issue | 3 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4002444 | |
journal fristpage | 31003 | |
identifier eissn | 1528-8943 | |
keywords | Temperature | |
keywords | Lasers | |
keywords | Irradiation (Radiation exposure) | |
keywords | Melting | |
keywords | Trains | |
keywords | Separation (Technology) AND Metallic films | |
tree | Journal of Heat Transfer:;2011:;volume( 133 ):;issue: 003 | |
contenttype | Fulltext | |