YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance

    Source: Journal of Heat Transfer:;2011:;volume( 133 ):;issue: 006::page 62401
    Author:
    Patrick E. Hopkins
    ,
    Pamela M. Norris
    ,
    John C. Duda
    DOI: 10.1115/1.4003549
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Continued reduction in characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharmonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the diffuse mismatch model, which only considers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the maximum transmission model and the higher harmonic inelastic model. A new model is derived, the anharmonic inelastic model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new anharmonic inelastic model shows improved agreement between the thermal boundary conductance predictions and experimental data at the Pb/diamond and Au/diamond interfaces due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb and Au. We conclude by discussing phonon scattering selection rules at interfaces and the probability of occurrence of these higher order anharmonic interfacial phonon processes quantified in this work.
    keyword(s): Temperature , Phonons , Radiation scattering , Electromagnetic scattering , Electrical conductance AND Diamonds ,
    • Download: (535.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/146681
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorPatrick E. Hopkins
    contributor authorPamela M. Norris
    contributor authorJohn C. Duda
    date accessioned2017-05-09T00:45:01Z
    date available2017-05-09T00:45:01Z
    date copyrightJune, 2011
    date issued2011
    identifier issn0022-1481
    identifier otherJHTRAO-27915#062401_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/146681
    description abstractContinued reduction in characteristic dimensions in nanosystems has given rise to increasing importance of material interfaces on the overall system performance. With regard to thermal transport, this increases the need for a better fundamental understanding of the processes affecting interfacial thermal transport, as characterized by the thermal boundary conductance. When thermal boundary conductance is driven by phononic scattering events, accurate predictions of interfacial transport must account for anharmonic phononic coupling as this affects the thermal transmission. In this paper, a new model for phononic thermal boundary conductance is developed that takes into account anharmonic coupling, or inelastic scattering events, at the interface between two materials. Previous models for thermal boundary conductance are first reviewed, including the diffuse mismatch model, which only considers elastic phonon scattering events, and earlier attempts to account for inelastic phonon scattering, namely, the maximum transmission model and the higher harmonic inelastic model. A new model is derived, the anharmonic inelastic model, which provides a more physical consideration of the effects of inelastic scattering on thermal boundary conductance. This is accomplished by considering specific ranges of phonon frequency interactions and phonon number density conservation. Thus, this model considers the contributions of anharmonic, inelastically scattered phonons to thermal boundary conductance. This new anharmonic inelastic model shows improved agreement between the thermal boundary conductance predictions and experimental data at the Pb/diamond and Au/diamond interfaces due to its ability to account for the temperature dependent changing phonon population in diamond, which can couple anharmonically with multiple phonons in Pb and Au. We conclude by discussing phonon scattering selection rules at interfaces and the probability of occurrence of these higher order anharmonic interfacial phonon processes quantified in this work.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4003549
    journal fristpage62401
    identifier eissn1528-8943
    keywordsTemperature
    keywordsPhonons
    keywordsRadiation scattering
    keywordsElectromagnetic scattering
    keywordsElectrical conductance AND Diamonds
    treeJournal of Heat Transfer:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian