YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of Direct Carbonate Fuel Cell Systems for Achieving Ultrahigh Efficiency

    Source: Journal of Fuel Cell Science and Technology:;2011:;volume( 008 ):;issue: 003::page 31011
    Author:
    Hossein Ghezel-Ayagh
    ,
    Joseph McInerney
    ,
    Ramki Venkataraman
    ,
    Mohammad Farooque
    ,
    Robert Sanderson
    DOI: 10.1115/1.4002905
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: FuelCell Energy, Inc. (FCE) has developed products based on its Direct FuelCell® (DFC® ) technology with efficiencies near 50% based on lower heating values of natural gas. DFC is an internally reformed molten carbonate fuel cell, which operates in the 550–700°C range. The combination of the internal reforming of methane and atmospheric pressure and moderately high temperature of operation has resulted in very simple power plant system configurations. Recently, FCE has developed system concepts to further increase the net electric efficiency to beyond 60% efficiency in sub-MW and MW class power plants. One of these system concepts is the arrangement of the fuel cell stacks in series for very high utilization of fuel in the stacks. Although, in principle, the concept of fuel cell stacks in series is very simple, the implementation of the concept in the actual hardware poses challenges requiring innovative solutions. These challenges include concerns with thermomechanical issues, flow and utilization patterns within the fuel cell stacks, and management of the pressure balance between the anode and the cathode. To address these issues, various analytical tools, including system-level modeling and simulation and computational fluid dynamics (CFD), were utilized. FCE has developed a comprehensive fuel cell stack operation simulation model including hydrodynamics, kinetics, electrochemical, and heat transfer mechanisms to investigate and optimize the design for performance as well as endurance. Various system configurations were developed, which included methods for fueling the second tier stacks in the series. System simulation studies using first principle mass and energy conversation laws were performed. Parametric studies were completed. Subsequent to the system modeling results, the fuel cell stack operations were analyzed using the comprehensive stack simulation model. The CFD modeling of the fuel cell stacks was performed in support of the system simulation parametric studies. The results of the CFD modeling provided insight to the thermal and flow profiles of both first and second tier stacks in series. The net outcome of the investigation was the design of the system, which met the goals of ultrahigh efficiency and yet complied with the thermomechanical requirements of the fuel cell stack components. In this paper, FCE will describe various system options for the very high efficiency systems, the issues related to the design, and the practical solutions to overcome the issues.
    keyword(s): Fuels , Computational fluid dynamics , Fuel cells , Anodes , Flow (Dynamics) , Methane AND Cooling ,
    • Download: (1.124Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of Direct Carbonate Fuel Cell Systems for Achieving Ultrahigh Efficiency

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/146484
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorHossein Ghezel-Ayagh
    contributor authorJoseph McInerney
    contributor authorRamki Venkataraman
    contributor authorMohammad Farooque
    contributor authorRobert Sanderson
    date accessioned2017-05-09T00:44:39Z
    date available2017-05-09T00:44:39Z
    date copyrightJune, 2011
    date issued2011
    identifier issn2381-6872
    identifier otherJFCSAU-28948#031011_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/146484
    description abstractFuelCell Energy, Inc. (FCE) has developed products based on its Direct FuelCell® (DFC® ) technology with efficiencies near 50% based on lower heating values of natural gas. DFC is an internally reformed molten carbonate fuel cell, which operates in the 550–700°C range. The combination of the internal reforming of methane and atmospheric pressure and moderately high temperature of operation has resulted in very simple power plant system configurations. Recently, FCE has developed system concepts to further increase the net electric efficiency to beyond 60% efficiency in sub-MW and MW class power plants. One of these system concepts is the arrangement of the fuel cell stacks in series for very high utilization of fuel in the stacks. Although, in principle, the concept of fuel cell stacks in series is very simple, the implementation of the concept in the actual hardware poses challenges requiring innovative solutions. These challenges include concerns with thermomechanical issues, flow and utilization patterns within the fuel cell stacks, and management of the pressure balance between the anode and the cathode. To address these issues, various analytical tools, including system-level modeling and simulation and computational fluid dynamics (CFD), were utilized. FCE has developed a comprehensive fuel cell stack operation simulation model including hydrodynamics, kinetics, electrochemical, and heat transfer mechanisms to investigate and optimize the design for performance as well as endurance. Various system configurations were developed, which included methods for fueling the second tier stacks in the series. System simulation studies using first principle mass and energy conversation laws were performed. Parametric studies were completed. Subsequent to the system modeling results, the fuel cell stack operations were analyzed using the comprehensive stack simulation model. The CFD modeling of the fuel cell stacks was performed in support of the system simulation parametric studies. The results of the CFD modeling provided insight to the thermal and flow profiles of both first and second tier stacks in series. The net outcome of the investigation was the design of the system, which met the goals of ultrahigh efficiency and yet complied with the thermomechanical requirements of the fuel cell stack components. In this paper, FCE will describe various system options for the very high efficiency systems, the issues related to the design, and the practical solutions to overcome the issues.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of Direct Carbonate Fuel Cell Systems for Achieving Ultrahigh Efficiency
    typeJournal Paper
    journal volume8
    journal issue3
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4002905
    journal fristpage31011
    identifier eissn2381-6910
    keywordsFuels
    keywordsComputational fluid dynamics
    keywordsFuel cells
    keywordsAnodes
    keywordsFlow (Dynamics)
    keywordsMethane AND Cooling
    treeJournal of Fuel Cell Science and Technology:;2011:;volume( 008 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian