Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space InducerSource: Journal of Fluids Engineering:;2011:;volume( 133 ):;issue: 006::page 61301Author:Yoshiki Yoshida
,
Hideaki Nanri
,
Yusuke Kazami
,
Yuka Iga
,
Kengo Kikuta
,
Toshiaki Ikohagi
DOI: 10.1115/1.4004022Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The relationship between the thermodynamic effect and subsynchronous rotating cavitation was investigated with a focus on cavity fluctuations. Experiments on a three-bladed inducer were conducted with liquid nitrogen at different temperatures (74, 78, and 83 K) to confirm the dependence of the thermodynamic effects. Subsynchronous rotating cavitation appeared at lower cavitation numbers in liquid nitrogen at 74 K, the same as in cold water. In contrast, in liquid nitrogen at 83 K the occurrence of subsynchronous rotating cavitation was suppressed because of the increase of the thermodynamic effect due to the rising temperature. Furthermore, unevenness of cavity length under synchronous rotating cavitation at 83 K was also decreased by the thermodynamic effect. However, surge mode oscillation occurred simultaneously under this weakened synchronous rotating cavitation. Cavity lengths on the blades oscillated with the same phase and maintained the uneven cavity pattern. It was inferred that the thermodynamic effect weakened peripheral cavitation instability, i.e., synchronous rotating cavitation, and thus axial cavitation instability, i.e., surge mode oscillation, was easily induced due to the synchronization of the cavity fluctuation with an acoustic resonance in the present experimental inlet-pipe system.
keyword(s): Cavitation , Nitrogen , Surges AND Oscillations ,
|
Collections
Show full item record
| contributor author | Yoshiki Yoshida | |
| contributor author | Hideaki Nanri | |
| contributor author | Yusuke Kazami | |
| contributor author | Yuka Iga | |
| contributor author | Kengo Kikuta | |
| contributor author | Toshiaki Ikohagi | |
| date accessioned | 2017-05-09T00:44:20Z | |
| date available | 2017-05-09T00:44:20Z | |
| date copyright | June, 2011 | |
| date issued | 2011 | |
| identifier issn | 0098-2202 | |
| identifier other | JFEGA4-27469#061301_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/146331 | |
| description abstract | The relationship between the thermodynamic effect and subsynchronous rotating cavitation was investigated with a focus on cavity fluctuations. Experiments on a three-bladed inducer were conducted with liquid nitrogen at different temperatures (74, 78, and 83 K) to confirm the dependence of the thermodynamic effects. Subsynchronous rotating cavitation appeared at lower cavitation numbers in liquid nitrogen at 74 K, the same as in cold water. In contrast, in liquid nitrogen at 83 K the occurrence of subsynchronous rotating cavitation was suppressed because of the increase of the thermodynamic effect due to the rising temperature. Furthermore, unevenness of cavity length under synchronous rotating cavitation at 83 K was also decreased by the thermodynamic effect. However, surge mode oscillation occurred simultaneously under this weakened synchronous rotating cavitation. Cavity lengths on the blades oscillated with the same phase and maintained the uneven cavity pattern. It was inferred that the thermodynamic effect weakened peripheral cavitation instability, i.e., synchronous rotating cavitation, and thus axial cavitation instability, i.e., surge mode oscillation, was easily induced due to the synchronization of the cavity fluctuation with an acoustic resonance in the present experimental inlet-pipe system. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer | |
| type | Journal Paper | |
| journal volume | 133 | |
| journal issue | 6 | |
| journal title | Journal of Fluids Engineering | |
| identifier doi | 10.1115/1.4004022 | |
| journal fristpage | 61301 | |
| identifier eissn | 1528-901X | |
| keywords | Cavitation | |
| keywords | Nitrogen | |
| keywords | Surges AND Oscillations | |
| tree | Journal of Fluids Engineering:;2011:;volume( 133 ):;issue: 006 | |
| contenttype | Fulltext |