YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Piezoelectric Wafer Active Sensors for Structural Health Monitoring of Composite Structures Using Tuned Guided Waves

    Source: Journal of Engineering Materials and Technology:;2011:;volume( 133 ):;issue: 004::page 41012
    Author:
    Victor Giurgiutiu
    DOI: 10.1115/1.4004698
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.
    keyword(s): Composite materials , Waves AND Structural health monitoring ,
    • Download: (1.141Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Piezoelectric Wafer Active Sensors for Structural Health Monitoring of Composite Structures Using Tuned Guided Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/146139
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorVictor Giurgiutiu
    date accessioned2017-05-09T00:43:53Z
    date available2017-05-09T00:43:53Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0094-4289
    identifier otherJEMTA8-27146#041012_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/146139
    description abstractPiezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePiezoelectric Wafer Active Sensors for Structural Health Monitoring of Composite Structures Using Tuned Guided Waves
    typeJournal Paper
    journal volume133
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.4004698
    journal fristpage41012
    identifier eissn1528-8889
    keywordsComposite materials
    keywordsWaves AND Structural health monitoring
    treeJournal of Engineering Materials and Technology:;2011:;volume( 133 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian