| contributor author | Yanfei Jin | |
| contributor author | Meng Xu | |
| contributor author | Ziyou Gao | |
| date accessioned | 2017-05-09T00:42:45Z | |
| date available | 2017-05-09T00:42:45Z | |
| date copyright | January, 2011 | |
| date issued | 2011 | |
| identifier issn | 1555-1415 | |
| identifier other | JCNDDM-25741#011018_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/145587 | |
| description abstract | An extended car-following model is proposed in this paper by using the generalized optimal velocity function and considering the multivelocity differences. The stability condition of the model is derived by using the linear stability theory. From the reductive perturbation method and nonlinear analysis, the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the traffic behaviors near the neutral stability line and around the critical point, respectively. The corresponding soliton wave and kink-antikink soliton solution are used to describe the different traffic jams. It is found that the generalized optimal velocity function and multivelocity differences consideration can further stabilize traffic flow and suppress traffic jams. The theoretical results are well verified through numerical simulations. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | KdV and Kink-Antikink Solitons in an Extended Car-Following Model | |
| type | Journal Paper | |
| journal volume | 6 | |
| journal issue | 1 | |
| journal title | Journal of Computational and Nonlinear Dynamics | |
| identifier doi | 10.1115/1.4002336 | |
| journal fristpage | 11018 | |
| identifier eissn | 1555-1423 | |
| keywords | Stability | |
| keywords | Flow (Dynamics) | |
| keywords | Waves | |
| keywords | Solitons | |
| keywords | Equations | |
| keywords | Traffic AND Korteweg-de Vries equation | |
| tree | Journal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 001 | |
| contenttype | Fulltext | |