YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    KdV and Kink-Antikink Solitons in an Extended Car-Following Model

    Source: Journal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 001::page 11018
    Author:
    Yanfei Jin
    ,
    Meng Xu
    ,
    Ziyou Gao
    DOI: 10.1115/1.4002336
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An extended car-following model is proposed in this paper by using the generalized optimal velocity function and considering the multivelocity differences. The stability condition of the model is derived by using the linear stability theory. From the reductive perturbation method and nonlinear analysis, the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the traffic behaviors near the neutral stability line and around the critical point, respectively. The corresponding soliton wave and kink-antikink soliton solution are used to describe the different traffic jams. It is found that the generalized optimal velocity function and multivelocity differences consideration can further stabilize traffic flow and suppress traffic jams. The theoretical results are well verified through numerical simulations.
    keyword(s): Stability , Flow (Dynamics) , Waves , Solitons , Equations , Traffic AND Korteweg-de Vries equation ,
    • Download: (682.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      KdV and Kink-Antikink Solitons in an Extended Car-Following Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145587
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorYanfei Jin
    contributor authorMeng Xu
    contributor authorZiyou Gao
    date accessioned2017-05-09T00:42:45Z
    date available2017-05-09T00:42:45Z
    date copyrightJanuary, 2011
    date issued2011
    identifier issn1555-1415
    identifier otherJCNDDM-25741#011018_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145587
    description abstractAn extended car-following model is proposed in this paper by using the generalized optimal velocity function and considering the multivelocity differences. The stability condition of the model is derived by using the linear stability theory. From the reductive perturbation method and nonlinear analysis, the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the traffic behaviors near the neutral stability line and around the critical point, respectively. The corresponding soliton wave and kink-antikink soliton solution are used to describe the different traffic jams. It is found that the generalized optimal velocity function and multivelocity differences consideration can further stabilize traffic flow and suppress traffic jams. The theoretical results are well verified through numerical simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleKdV and Kink-Antikink Solitons in an Extended Car-Following Model
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4002336
    journal fristpage11018
    identifier eissn1555-1423
    keywordsStability
    keywordsFlow (Dynamics)
    keywordsWaves
    keywordsSolitons
    keywordsEquations
    keywordsTraffic AND Korteweg-de Vries equation
    treeJournal of Computational and Nonlinear Dynamics:;2011:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian