Validation of a New Method for Finding the Rotational Axes of the Knee Using Both Marker-Based Roentgen Stereophotogrammetric Analysis and 3D Video-Based Motion Analysis for Kinematic MeasurementsSource: Journal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 005::page 51003DOI: 10.1115/1.4003437Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ±0.0006 deg and ±0.036 mm and ±0.0001 deg and ±0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.
keyword(s): Rotation , Motion , Accuracy , Errors , Mechanisms AND Knee ,
|
Collections
Show full item record
| contributor author | Michelle Roland | |
| contributor author | M. L. Hull | |
| contributor author | S. M. Howell | |
| date accessioned | 2017-05-09T00:42:30Z | |
| date available | 2017-05-09T00:42:30Z | |
| date copyright | May, 2011 | |
| date issued | 2011 | |
| identifier issn | 0148-0731 | |
| identifier other | JBENDY-27207#051003_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/145443 | |
| description abstract | In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ±0.0006 deg and ±0.036 mm and ±0.0001 deg and ±0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Validation of a New Method for Finding the Rotational Axes of the Knee Using Both Marker-Based Roentgen Stereophotogrammetric Analysis and 3D Video-Based Motion Analysis for Kinematic Measurements | |
| type | Journal Paper | |
| journal volume | 133 | |
| journal issue | 5 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.4003437 | |
| journal fristpage | 51003 | |
| identifier eissn | 1528-8951 | |
| keywords | Rotation | |
| keywords | Motion | |
| keywords | Accuracy | |
| keywords | Errors | |
| keywords | Mechanisms AND Knee | |
| tree | Journal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 005 | |
| contenttype | Fulltext |