YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preconditioning is Correlated With Altered Collagen Fiber Alignment in Ligament

    Source: Journal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 006::page 64506
    Author:
    Kyle P. Quinn
    ,
    Beth A. Winkelstein
    DOI: 10.1115/1.4004205
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Although the mechanical phenomena associated with preconditioning are well-established, the underlying mechanisms responsible for this behavior are still not fully understood. Using quantitative polarized light imaging, this study assessed whether preconditioning alters the collagen fiber alignment of ligament tissue, and determined whether changes in fiber organization are associated with the reduced force and stiffness observed during loading. Collagen fiber alignment maps of facet capsular ligaments (n = 8) were generated before and after 30 cycles of cyclic tensile loading, and alignment vectors were correlated between the maps to identify altered fiber organization. The change in peak force and tangent stiffness between the 1st and 30th cycle were determined from the force-displacement response, and the principal strain field of the capsular ligament after preconditioning was calculated from the fiber alignment images. The decreases in peak ligament force and tangent stiffness between the 1st and 30th cycles of preconditioning were significantly correlated (R ≥ 0.976, p < 0.0001) with the change in correlation of fiber alignment vectors between maps. Furthermore, the decrease in ligament force was correlated with a rotation of the average fiber direction toward the direction of loading (R = −0.730; p = 0.0396). Decreases in peak force during loading and changes in fiber alignment after loading were correlated (p ≤ 0.0157) with the average principal strain of the unloaded ligament after preconditioning. Through the use of a vector correlation algorithm, this study quantifies detectable changes to the internal microstructure of soft tissue produced by preconditioning and demonstrates that the reorganization of the capsular ligament’s collagen fiber network, in addition to the viscoelasticity of its components, contribute to how the mechanical properties of the tissue change during its preconditioning.
    keyword(s): Force , Fibers , Stiffness , Cycles , Biological tissues , Displacement , Soft tissues AND Rotation ,
    • Download: (429.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preconditioning is Correlated With Altered Collagen Fiber Alignment in Ligament

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145440
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorKyle P. Quinn
    contributor authorBeth A. Winkelstein
    date accessioned2017-05-09T00:42:30Z
    date available2017-05-09T00:42:30Z
    date copyrightJune, 2011
    date issued2011
    identifier issn0148-0731
    identifier otherJBENDY-27209#064506_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145440
    description abstractAlthough the mechanical phenomena associated with preconditioning are well-established, the underlying mechanisms responsible for this behavior are still not fully understood. Using quantitative polarized light imaging, this study assessed whether preconditioning alters the collagen fiber alignment of ligament tissue, and determined whether changes in fiber organization are associated with the reduced force and stiffness observed during loading. Collagen fiber alignment maps of facet capsular ligaments (n = 8) were generated before and after 30 cycles of cyclic tensile loading, and alignment vectors were correlated between the maps to identify altered fiber organization. The change in peak force and tangent stiffness between the 1st and 30th cycle were determined from the force-displacement response, and the principal strain field of the capsular ligament after preconditioning was calculated from the fiber alignment images. The decreases in peak ligament force and tangent stiffness between the 1st and 30th cycles of preconditioning were significantly correlated (R ≥ 0.976, p < 0.0001) with the change in correlation of fiber alignment vectors between maps. Furthermore, the decrease in ligament force was correlated with a rotation of the average fiber direction toward the direction of loading (R = −0.730; p = 0.0396). Decreases in peak force during loading and changes in fiber alignment after loading were correlated (p ≤ 0.0157) with the average principal strain of the unloaded ligament after preconditioning. Through the use of a vector correlation algorithm, this study quantifies detectable changes to the internal microstructure of soft tissue produced by preconditioning and demonstrates that the reorganization of the capsular ligament’s collagen fiber network, in addition to the viscoelasticity of its components, contribute to how the mechanical properties of the tissue change during its preconditioning.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePreconditioning is Correlated With Altered Collagen Fiber Alignment in Ligament
    typeJournal Paper
    journal volume133
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4004205
    journal fristpage64506
    identifier eissn1528-8951
    keywordsForce
    keywordsFibers
    keywordsStiffness
    keywordsCycles
    keywordsBiological tissues
    keywordsDisplacement
    keywordsSoft tissues AND Rotation
    treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian