YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc under Fast Dynamic Compressive Loads

    Source: Journal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 010::page 101007
    Author:
    Eric Wagnac
    ,
    Pierre-Jean Arnoux
    ,
    Anaïs Garo
    ,
    Marwan El-Rich
    ,
    Carl-Eric Aubin
    DOI: 10.1115/1.4005224
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.
    keyword(s): Stress , Finite element methods , Materials properties , Engineering simulation , Annulus , Failure , Stiffness , Intervertebral discs , Calibration , Displacement , Fracture (Process) , Compression , Mechanical behavior AND Sensitivity analysis ,
    • Download: (2.667Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Calibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc under Fast Dynamic Compressive Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145368
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorEric Wagnac
    contributor authorPierre-Jean Arnoux
    contributor authorAnaïs Garo
    contributor authorMarwan El-Rich
    contributor authorCarl-Eric Aubin
    date accessioned2017-05-09T00:42:20Z
    date available2017-05-09T00:42:20Z
    date copyrightOctober, 2011
    date issued2011
    identifier issn0148-0731
    identifier otherJBENDY-27223#101007_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145368
    description abstractUnder fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCalibration of Hyperelastic Material Properties of the Human Lumbar Intervertebral Disc under Fast Dynamic Compressive Loads
    typeJournal Paper
    journal volume133
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4005224
    journal fristpage101007
    identifier eissn1528-8951
    keywordsStress
    keywordsFinite element methods
    keywordsMaterials properties
    keywordsEngineering simulation
    keywordsAnnulus
    keywordsFailure
    keywordsStiffness
    keywordsIntervertebral discs
    keywordsCalibration
    keywordsDisplacement
    keywordsFracture (Process)
    keywordsCompression
    keywordsMechanical behavior AND Sensitivity analysis
    treeJournal of Biomechanical Engineering:;2011:;volume( 133 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian