YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rational Finite Elements and Flexible Body Dynamics

    Source: Journal of Vibration and Acoustics:;2010:;volume( 132 ):;issue: 004::page 41007
    Author:
    Peng Lan
    ,
    Ahmed A. Shabana
    DOI: 10.1115/1.4000970
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The goal of this study is to develop the dynamic differential equations of the first finite element based on the rational absolute nodal coordinate formulation (RANCF) and to demonstrate its use in the nonlinear dynamic and vibration analysis of flexible bodies that undergo large displacements, including large deformations and finite rotations. New RANCF elements, which correctly describe rigid body displacements, will allow representing complex geometric shapes that cannot be described exactly using nonrational finite elements. Developing such rational finite elements will facilitate the integration of computer aided design and analysis and will allow for developing analysis models that are consistent with the actual geometry. In order to demonstrate the feasibility of developing RANCF finite elements, an Euler–Bernoulli beam element, called in this investigation as the cable element, is used. The relationship between the nonrational absolute nodal coordinate formulation (ANCF) finite elements and the nonrational Bezier curves is discussed briefly first in order to shed light on the transformation between the control points used in the Bezier curve representation and the ANCF gradient coordinates. Using similar procedure and coordinate transformation, the RANCF finite elements can be systematically derived from the computer aided design geometric description. The relationships between the rational Bezier and the RANCF interpolation functions are obtained and used to demonstrate that the new RANCF finite elements are capable of describing arbitrary large deformations and finite rotations. By assuming the weights of the Bezier curve representation to be constant, the RANCF finite elements lead to a constant mass matrix, and as a consequence, the Coriolis and centrifugal inertia force vectors are identically equal to zero. The assumption of constant weights can be used to ensure accurate representation of the geometry in the reference configuration and also allows for the use of the same rational interpolating polynomials to describe both the original geometry and the deformation. A large strain theory is used to formulate the nonlinear elastic forces of the new RANCF cable element. Numerical examples are presented in order to demonstrate the use of the RANCF cable element in the analysis of flexible bodies that experience large deformations and finite rotations. The results obtained are compared with the results obtained using the nonrational ANCF cable element.
    keyword(s): Force , Finite element analysis , Shapes , Cables , Pendulums , Gradients , Functions , Equations , Inertia (Mechanics) , Geometry , Deformation AND Polynomials ,
    • Download: (846.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rational Finite Elements and Flexible Body Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145095
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorPeng Lan
    contributor authorAhmed A. Shabana
    date accessioned2017-05-09T00:41:48Z
    date available2017-05-09T00:41:48Z
    date copyrightAugust, 2010
    date issued2010
    identifier issn1048-9002
    identifier otherJVACEK-28908#041007_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145095
    description abstractThe goal of this study is to develop the dynamic differential equations of the first finite element based on the rational absolute nodal coordinate formulation (RANCF) and to demonstrate its use in the nonlinear dynamic and vibration analysis of flexible bodies that undergo large displacements, including large deformations and finite rotations. New RANCF elements, which correctly describe rigid body displacements, will allow representing complex geometric shapes that cannot be described exactly using nonrational finite elements. Developing such rational finite elements will facilitate the integration of computer aided design and analysis and will allow for developing analysis models that are consistent with the actual geometry. In order to demonstrate the feasibility of developing RANCF finite elements, an Euler–Bernoulli beam element, called in this investigation as the cable element, is used. The relationship between the nonrational absolute nodal coordinate formulation (ANCF) finite elements and the nonrational Bezier curves is discussed briefly first in order to shed light on the transformation between the control points used in the Bezier curve representation and the ANCF gradient coordinates. Using similar procedure and coordinate transformation, the RANCF finite elements can be systematically derived from the computer aided design geometric description. The relationships between the rational Bezier and the RANCF interpolation functions are obtained and used to demonstrate that the new RANCF finite elements are capable of describing arbitrary large deformations and finite rotations. By assuming the weights of the Bezier curve representation to be constant, the RANCF finite elements lead to a constant mass matrix, and as a consequence, the Coriolis and centrifugal inertia force vectors are identically equal to zero. The assumption of constant weights can be used to ensure accurate representation of the geometry in the reference configuration and also allows for the use of the same rational interpolating polynomials to describe both the original geometry and the deformation. A large strain theory is used to formulate the nonlinear elastic forces of the new RANCF cable element. Numerical examples are presented in order to demonstrate the use of the RANCF cable element in the analysis of flexible bodies that experience large deformations and finite rotations. The results obtained are compared with the results obtained using the nonrational ANCF cable element.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRational Finite Elements and Flexible Body Dynamics
    typeJournal Paper
    journal volume132
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4000970
    journal fristpage41007
    identifier eissn1528-8927
    keywordsForce
    keywordsFinite element analysis
    keywordsShapes
    keywordsCables
    keywordsPendulums
    keywordsGradients
    keywordsFunctions
    keywordsEquations
    keywordsInertia (Mechanics)
    keywordsGeometry
    keywordsDeformation AND Polynomials
    treeJournal of Vibration and Acoustics:;2010:;volume( 132 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian