YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Tilting-Pad Journal Bearing Dynamic Full Coefficient and Reduced Order Models Using Modal Analysis (GT2009-60269)

    Source: Journal of Vibration and Acoustics:;2010:;volume( 132 ):;issue: 005::page 51009
    Author:
    Timothy W. Dimond
    ,
    Amir A. Younan
    ,
    Paul Allaire
    DOI: 10.1115/1.4001507
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: There is a significant disagreement in the literature concerning the proper evaluation of the experimental identification and frequency response of tilting-pad journal bearings (TPJBs) due to shaft excitations. Two linear models for the frequency dependence of TPJBs have been proposed. The first model, the full coefficient or stiffness-damping (KC) model, considers Np tilting pads and two rotor radial motions for Np+2 degrees of freedom. The dynamic reduction of the KC model results in eight frequency-dependent stiffness and damping coefficients. The second model, based on bearing system identification experimental results, employs 12 frequency-independent stiffness, damping, and mass (KCM) coefficients; pad degrees of freedom are not considered explicitly. Experimental data have been presented to support both models. There are major differences in the two approaches. The present analysis takes a new approach of considering pad dynamics explicitly in a state-space modal analysis. TPJB shaft and bearing pad stiffness and damping coefficients are calculated using a well known laminar, isothermal analysis and a pad assembly method. The TPJB rotor and pad KC model eigenvalues and eigenvectors are then evaluated using state-space methods, with rotor and bearing pad inertias included explicitly in the model. The KC model results are also nonsynchronously reduced to the eight stiffness and damping coefficients and are expressed as shaft complex impedances. The system identification method is then applied to these complex impedances, and the state-space modal analysis is applied to the resulting KCM model. The damping ratios, natural frequencies, and mode shapes from the two bearing representations are compared. Two sample TPJB cases are examined in detail. The analysis indicated that four underdamped modes, two forward and two backward, dominate the rotor response over excitation frequencies from 0 to approximately running speed. The KC model predicts additional nearly critically damped modes primarily involving pad degrees of freedom, which do not exist in the identified KCM model. The KCM model results in natural frequencies that are 63–65% higher than the KC model. The difference in modal damping ratio estimates depends on the TPJB considered; the KCM estimate was 7–17% higher than the KC model. The results indicate that the KCM system identification method results in a reduced order model of TPBJ dynamic behavior, which may not capture physically justifiable results. Additionally, the differences in the calculated system natural frequency and modal damping have potential implications for rotordynamic analyses of flexible rotors.
    keyword(s): Degrees of freedom , Bearings , Damping , Eigenvalues , Rotors , Stiffness AND Journal bearings ,
    • Download: (648.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Tilting-Pad Journal Bearing Dynamic Full Coefficient and Reduced Order Models Using Modal Analysis (GT2009-60269)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145078
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorTimothy W. Dimond
    contributor authorAmir A. Younan
    contributor authorPaul Allaire
    date accessioned2017-05-09T00:41:46Z
    date available2017-05-09T00:41:46Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn1048-9002
    identifier otherJVACEK-28909#051009_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145078
    description abstractThere is a significant disagreement in the literature concerning the proper evaluation of the experimental identification and frequency response of tilting-pad journal bearings (TPJBs) due to shaft excitations. Two linear models for the frequency dependence of TPJBs have been proposed. The first model, the full coefficient or stiffness-damping (KC) model, considers Np tilting pads and two rotor radial motions for Np+2 degrees of freedom. The dynamic reduction of the KC model results in eight frequency-dependent stiffness and damping coefficients. The second model, based on bearing system identification experimental results, employs 12 frequency-independent stiffness, damping, and mass (KCM) coefficients; pad degrees of freedom are not considered explicitly. Experimental data have been presented to support both models. There are major differences in the two approaches. The present analysis takes a new approach of considering pad dynamics explicitly in a state-space modal analysis. TPJB shaft and bearing pad stiffness and damping coefficients are calculated using a well known laminar, isothermal analysis and a pad assembly method. The TPJB rotor and pad KC model eigenvalues and eigenvectors are then evaluated using state-space methods, with rotor and bearing pad inertias included explicitly in the model. The KC model results are also nonsynchronously reduced to the eight stiffness and damping coefficients and are expressed as shaft complex impedances. The system identification method is then applied to these complex impedances, and the state-space modal analysis is applied to the resulting KCM model. The damping ratios, natural frequencies, and mode shapes from the two bearing representations are compared. Two sample TPJB cases are examined in detail. The analysis indicated that four underdamped modes, two forward and two backward, dominate the rotor response over excitation frequencies from 0 to approximately running speed. The KC model predicts additional nearly critically damped modes primarily involving pad degrees of freedom, which do not exist in the identified KCM model. The KCM model results in natural frequencies that are 63–65% higher than the KC model. The difference in modal damping ratio estimates depends on the TPJB considered; the KCM estimate was 7–17% higher than the KC model. The results indicate that the KCM system identification method results in a reduced order model of TPBJ dynamic behavior, which may not capture physically justifiable results. Additionally, the differences in the calculated system natural frequency and modal damping have potential implications for rotordynamic analyses of flexible rotors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Tilting-Pad Journal Bearing Dynamic Full Coefficient and Reduced Order Models Using Modal Analysis (GT2009-60269)
    typeJournal Paper
    journal volume132
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4001507
    journal fristpage51009
    identifier eissn1528-8927
    keywordsDegrees of freedom
    keywordsBearings
    keywordsDamping
    keywordsEigenvalues
    keywordsRotors
    keywordsStiffness AND Journal bearings
    treeJournal of Vibration and Acoustics:;2010:;volume( 132 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian