YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders

    Source: Journal of Turbomachinery:;2010:;volume( 132 ):;issue: 001::page 11001
    Author:
    John Harinck
    ,
    A. Guardone
    ,
    S. Rebay
    ,
    P. Colonna
    DOI: 10.1115/1.3192146
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a quantitative comparison of the effect of using thermodynamic models of various degrees of complexity if applied to fluid-dynamic simulations of turboexpanders operated at conditions affected by strong real-gas effects. The 2D flow field of a standard transonic turbine stator is simulated using the state-of-the-art inviscid ZFLOW computational fluid-dynamic solver coupled with a fluid property library containing the thermodynamic models. The considered thermodynamic models are, in order of increasing complexity, the polytropic ideal-gas (PIG) law, the Peng–Robinson–Stryjek–Vera (PRSV) cubic equation of state, and the highly accurate multiparameter equations of state (MPEoSs), which are adopted as benchmark reference. The fluids are steam, toluene, and R245fa. The two processes under scrutiny are a moderately nonideal subcritical expansion and a highly nonideal supercritical expansion characterized by the same pressure ratio. Using the PIG model for moderately nonideal subcritical expansions leads to large deviations with magnitudes of up to 18–25% in density, sound speed, velocity, and total pressure loss, and up to 4–10% in Mach number, pressure, temperature, and mass flow rate. The PIG model applied to highly nonideal supercritical expansions leads to a doubling of the deviations’ magnitudes. The advantage of the PIG model is that its computational cost is roughly 1/11 (or 1/3 if saturation-checks in the MPEoS are omitted) of the cost of the MPEoSs. For the subcritical expansion, adopting the physically more correct cubic PRSV model leads to comparatively smaller deviations, namely, <2% (toluene and R245fa) and <4% (steam) in all flow parameters, except for the total pressure loss error, which is comparable to that of the PIG model. The PRSV model is reasonably accurate even for the highly nonideal supercritical expansion, for which the errors are at most 4%. The computational cost of the PRSV model is roughly nine times higher than the cost of the PIG model (or twice as high if saturation-checks in the PRSV are omitted). Contrary to low-complexity fluids like water, for complex fluids like toluene and R245fa the deviations in density, speed of sound, and velocity ensuing from the use of the PIG model vary strongly along the isentropic expansions. This invalidates the approach commonly used in practice of correcting the PIG model with a properly chosen constant compressibility factor.
    keyword(s): Pressure , Flow (Dynamics) , Mach number , Temperature , Fluids , Engineering simulation , Errors , Steam , Sound , Blades AND Density ,
    • Download: (6.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/145029
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorJohn Harinck
    contributor authorA. Guardone
    contributor authorS. Rebay
    contributor authorP. Colonna
    date accessioned2017-05-09T00:41:40Z
    date available2017-05-09T00:41:40Z
    date copyrightJanuary, 2010
    date issued2010
    identifier issn0889-504X
    identifier otherJOTUEI-28760#011001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/145029
    description abstractThis paper presents a quantitative comparison of the effect of using thermodynamic models of various degrees of complexity if applied to fluid-dynamic simulations of turboexpanders operated at conditions affected by strong real-gas effects. The 2D flow field of a standard transonic turbine stator is simulated using the state-of-the-art inviscid ZFLOW computational fluid-dynamic solver coupled with a fluid property library containing the thermodynamic models. The considered thermodynamic models are, in order of increasing complexity, the polytropic ideal-gas (PIG) law, the Peng–Robinson–Stryjek–Vera (PRSV) cubic equation of state, and the highly accurate multiparameter equations of state (MPEoSs), which are adopted as benchmark reference. The fluids are steam, toluene, and R245fa. The two processes under scrutiny are a moderately nonideal subcritical expansion and a highly nonideal supercritical expansion characterized by the same pressure ratio. Using the PIG model for moderately nonideal subcritical expansions leads to large deviations with magnitudes of up to 18–25% in density, sound speed, velocity, and total pressure loss, and up to 4–10% in Mach number, pressure, temperature, and mass flow rate. The PIG model applied to highly nonideal supercritical expansions leads to a doubling of the deviations’ magnitudes. The advantage of the PIG model is that its computational cost is roughly 1/11 (or 1/3 if saturation-checks in the MPEoS are omitted) of the cost of the MPEoSs. For the subcritical expansion, adopting the physically more correct cubic PRSV model leads to comparatively smaller deviations, namely, <2% (toluene and R245fa) and <4% (steam) in all flow parameters, except for the total pressure loss error, which is comparable to that of the PIG model. The PRSV model is reasonably accurate even for the highly nonideal supercritical expansion, for which the errors are at most 4%. The computational cost of the PRSV model is roughly nine times higher than the cost of the PIG model (or twice as high if saturation-checks in the PRSV are omitted). Contrary to low-complexity fluids like water, for complex fluids like toluene and R245fa the deviations in density, speed of sound, and velocity ensuing from the use of the PIG model vary strongly along the isentropic expansions. This invalidates the approach commonly used in practice of correcting the PIG model with a properly chosen constant compressibility factor.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders
    typeJournal Paper
    journal volume132
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.3192146
    journal fristpage11001
    identifier eissn1528-8900
    keywordsPressure
    keywordsFlow (Dynamics)
    keywordsMach number
    keywordsTemperature
    keywordsFluids
    keywordsEngineering simulation
    keywordsErrors
    keywordsSteam
    keywordsSound
    keywordsBlades AND Density
    treeJournal of Turbomachinery:;2010:;volume( 132 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian