YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications

    Source: Journal of Turbomachinery:;2010:;volume( 132 ):;issue: 003::page 31004
    Author:
    T. Verstraete
    ,
    Z. Alsalihi
    ,
    R. A. Van den Braembussche
    DOI: 10.1115/1.3144162
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A multidisciplinary optimization system and its application to the design of a small radial compressor impeller are presented. The method uses a genetic algorithm and artificial neural network to find a compromise between the conflicting demands of high efficiency and low centrifugal stresses in the blades. Concurrent analyses of the aero performance and stress predictions replace the traditional time consuming sequential design approach. The aerodynamic performance, predicted by a 3D Navier–Stokes solver, is maximized while limiting the mechanical stresses to a maximum value. The stresses are calculated by means of a finite element analysis, and controlled by modifying the blade camber, lean, and thickness at the hub. The results show that it is possible to obtain a significant reduction of the centrifugal stresses in the blades without penalizing the performance.
    keyword(s): Compressors , Stress , Design , Optimization , Blades , Turbines , Artificial neural networks , Thickness , Geometry , Impellers AND Finite element analysis ,
    • Download: (758.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144984
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorT. Verstraete
    contributor authorZ. Alsalihi
    contributor authorR. A. Van den Braembussche
    date accessioned2017-05-09T00:41:31Z
    date available2017-05-09T00:41:31Z
    date copyrightJuly, 2010
    date issued2010
    identifier issn0889-504X
    identifier otherJOTUEI-28764#031004_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144984
    description abstractA multidisciplinary optimization system and its application to the design of a small radial compressor impeller are presented. The method uses a genetic algorithm and artificial neural network to find a compromise between the conflicting demands of high efficiency and low centrifugal stresses in the blades. Concurrent analyses of the aero performance and stress predictions replace the traditional time consuming sequential design approach. The aerodynamic performance, predicted by a 3D Navier–Stokes solver, is maximized while limiting the mechanical stresses to a maximum value. The stresses are calculated by means of a finite element analysis, and controlled by modifying the blade camber, lean, and thickness at the hub. The results show that it is possible to obtain a significant reduction of the centrifugal stresses in the blades without penalizing the performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMultidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
    typeJournal Paper
    journal volume132
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.3144162
    journal fristpage31004
    identifier eissn1528-8900
    keywordsCompressors
    keywordsStress
    keywordsDesign
    keywordsOptimization
    keywordsBlades
    keywordsTurbines
    keywordsArtificial neural networks
    keywordsThickness
    keywordsGeometry
    keywordsImpellers AND Finite element analysis
    treeJournal of Turbomachinery:;2010:;volume( 132 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian