YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Deformation Speed on Frictional Behavior by Tip Test

    Source: Journal of Tribology:;2010:;volume( 132 ):;issue: 003::page 31801
    Author:
    Ki-Ho Jung
    ,
    Yong-Taek Im
    DOI: 10.1115/1.4001556
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this study, a tip test was carried out under various ram velocities of 0.01 mm/s, 0.1 mm/s, 1.0 mm/s, and 5.0 mm/s to investigate the effect of deformation speed on friction using the commercially available AL6061-O. For experiments, four different lubrication conditions with grease, corn oil, VG100, and VG32 were used to investigate the lubrication characteristics. During the test, temperature was measured in the specimen by a K-type thermocouple to determine the temperature increase induced by heat generation due to plastic deformation. In the present investigation, the linearity between tip distance and experimentally measured maximum load was consistently observed in spite of different orders of ram velocity and types of lubrication. As the ram velocity increased, loads were reduced for liquid lubricants and increased for grease. To better understand such a lubrication phenomenon, white-light interferometer microscopy and laser confocal microscopy were used to observe and compare surface topographies on the bottom and circumferential side of the deformed specimens at various experimental conditions, which formed lubrication pockets incurring hydrodynamic pressure of liquid lubricants. Finally, the effect of deformation speed on the level of shear friction factors at the punch and die interfaces was characterized by the finite element simulations and was determined to be expressed as an exponential function depending on the lubricant. This investigation demonstrates the capability of the tip test to experimentally characterize the effect of deformation speed on the frictional behavior for practical use.
    keyword(s): Temperature , Lubricants , Stress , Shear (Mechanics) , Deformation , Friction AND Lubrication ,
    • Download: (1.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Deformation Speed on Frictional Behavior by Tip Test

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144898
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorKi-Ho Jung
    contributor authorYong-Taek Im
    date accessioned2017-05-09T00:41:09Z
    date available2017-05-09T00:41:09Z
    date copyrightJuly, 2010
    date issued2010
    identifier issn0742-4787
    identifier otherJOTRE9-28775#031801_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144898
    description abstractIn this study, a tip test was carried out under various ram velocities of 0.01 mm/s, 0.1 mm/s, 1.0 mm/s, and 5.0 mm/s to investigate the effect of deformation speed on friction using the commercially available AL6061-O. For experiments, four different lubrication conditions with grease, corn oil, VG100, and VG32 were used to investigate the lubrication characteristics. During the test, temperature was measured in the specimen by a K-type thermocouple to determine the temperature increase induced by heat generation due to plastic deformation. In the present investigation, the linearity between tip distance and experimentally measured maximum load was consistently observed in spite of different orders of ram velocity and types of lubrication. As the ram velocity increased, loads were reduced for liquid lubricants and increased for grease. To better understand such a lubrication phenomenon, white-light interferometer microscopy and laser confocal microscopy were used to observe and compare surface topographies on the bottom and circumferential side of the deformed specimens at various experimental conditions, which formed lubrication pockets incurring hydrodynamic pressure of liquid lubricants. Finally, the effect of deformation speed on the level of shear friction factors at the punch and die interfaces was characterized by the finite element simulations and was determined to be expressed as an exponential function depending on the lubricant. This investigation demonstrates the capability of the tip test to experimentally characterize the effect of deformation speed on the frictional behavior for practical use.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Deformation Speed on Frictional Behavior by Tip Test
    typeJournal Paper
    journal volume132
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.4001556
    journal fristpage31801
    identifier eissn1528-8897
    keywordsTemperature
    keywordsLubricants
    keywordsStress
    keywordsShear (Mechanics)
    keywordsDeformation
    keywordsFriction AND Lubrication
    treeJournal of Tribology:;2010:;volume( 132 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian