Show simple item record

contributor authorJ. P. Silva
contributor authorG. Nofuentes
contributor authorJ. V. Muñoz
date accessioned2017-05-09T00:40:42Z
date available2017-05-09T00:40:42Z
date copyrightNovember, 2010
date issued2010
identifier issn0199-6231
identifier otherJSEEDO-28434#041016_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144752
description abstractDetermination of the working temperature of photovoltaic (PV) modules is an essential task in research and engineering projects. It acquires more relevance in the current environment, characterized by increasing figures of installed PV power, module efficiency, solar applications, and operational configurations. However, most of the current procedures for temperature determination of PV modules are simply based on empirical correlations, carried out at conditions defined by some specific standards, with the corresponding lack of accuracy when modules work under real conditions. Thus, the present work looks into a formal procedure for temperature determination by conducting a power balance between the dynamic incoming and outgoing power fluxes. Some additional parameters are included when compared with classic expressions. In particular, the spectral reflectance of the tandem glass-semiconductor is measured to determine the reflected fraction of solar irradiance. The relationship between reflectance and equilibrium temperature is determined for a representative group of PV modules, and the influence that the working point exerts on the module temperature has also been taken into account. Finally, the influence of spectral distribution on module temperature has been quantified by simulations carried out by using a spectral model. In this way, determination of absolute temperature is achieved within a ±2°C range, regardless of module characteristics and climatic or operational conditions. In addition, temperature differences between PV modules that work under the same external conditions can be predicted within ±0.5°C. To summarize, a thermal model suitable for different PV modules and working configurations is presented. Some new parameters are introduced in the calculus process, and the influence of the most relevant ones has been quantified. In this way, the present work is aimed at making a contribution to the study of PV module temperature.
publisherThe American Society of Mechanical Engineers (ASME)
titleSpectral Reflectance Patterns of Photovoltaic Modules and Their Thermal Effects
typeJournal Paper
journal volume132
journal issue4
journal titleJournal of Solar Energy Engineering
identifier doi10.1115/1.4002246
journal fristpage41016
identifier eissn1528-8986
keywordsTemperature
keywordsReflectance AND Solar radiation
treeJournal of Solar Energy Engineering:;2010:;volume( 132 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record