YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies

    Source: Journal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 003::page 34001
    Author:
    R. A. Ibrahim
    DOI: 10.1115/1.4001271
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This two-part review article presents an overview of mechanics of pipes conveying fluid and related problems such as the fluid-elastic instability under conditions of turbulence in nuclear power plants. In the first part, different types of modeling, dynamic analysis, and stability regimes of pipes conveying fluid restrained by elastic or inelastic barriers are described. The dynamic and stability behaviors of pinned-pinned, clamped-clamped, and cantilevered pipes conveying fluid together with curved and articulated pipes will be discussed. Other problems such as pipes made of viscoelastic materials and active control of severe pipe vibrations are considered. This part will be closed by conclusions highlighting resolved and nonresolved controversies reported in literature. The second part will address the problem of fluid-elastic instability in single- and two-phase flows and fretting wear in process equipment such as heat exchangers and steam generators. Connors critical velocity will be discussed as a measure of initiating fluid-elastic instability. Vibro-impact of heat exchanger tubes and the random excitation by the cross-flow can produce a progressive damage at the supports through fretting wear or fatigue. Antivibration bar supports used to limit pipe vibrations are described. An assessment of analytical, numerical, and experimental techniques of fretting wear problem of pipes in heat exchangers will be given. Other topics related to this part include remote impact analysis and parameter identification, pipe damage-induced by pressure elastic waves, the dynamic response and stability of long pipes, marine risers together with pipes aspirating fluid, and carbon nanotubes conveying fluid.
    keyword(s): Flow (Dynamics) , Fluids , Pipes , Stability AND Motion ,
    • Download: (820.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144692
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorR. A. Ibrahim
    date accessioned2017-05-09T00:40:35Z
    date available2017-05-09T00:40:35Z
    date copyrightJune, 2010
    date issued2010
    identifier issn0094-9930
    identifier otherJPVTAS-28533#034001_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144692
    description abstractThis two-part review article presents an overview of mechanics of pipes conveying fluid and related problems such as the fluid-elastic instability under conditions of turbulence in nuclear power plants. In the first part, different types of modeling, dynamic analysis, and stability regimes of pipes conveying fluid restrained by elastic or inelastic barriers are described. The dynamic and stability behaviors of pinned-pinned, clamped-clamped, and cantilevered pipes conveying fluid together with curved and articulated pipes will be discussed. Other problems such as pipes made of viscoelastic materials and active control of severe pipe vibrations are considered. This part will be closed by conclusions highlighting resolved and nonresolved controversies reported in literature. The second part will address the problem of fluid-elastic instability in single- and two-phase flows and fretting wear in process equipment such as heat exchangers and steam generators. Connors critical velocity will be discussed as a measure of initiating fluid-elastic instability. Vibro-impact of heat exchanger tubes and the random excitation by the cross-flow can produce a progressive damage at the supports through fretting wear or fatigue. Antivibration bar supports used to limit pipe vibrations are described. An assessment of analytical, numerical, and experimental techniques of fretting wear problem of pipes in heat exchangers will be given. Other topics related to this part include remote impact analysis and parameter identification, pipe damage-induced by pressure elastic waves, the dynamic response and stability of long pipes, marine risers together with pipes aspirating fluid, and carbon nanotubes conveying fluid.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOverview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies
    typeJournal Paper
    journal volume132
    journal issue3
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4001271
    journal fristpage34001
    identifier eissn1528-8978
    keywordsFlow (Dynamics)
    keywordsFluids
    keywordsPipes
    keywordsStability AND Motion
    treeJournal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian