YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Preferential Flexibility Direction on Fluidelastic Instability of a Rotated Triangular Tube Bundle

    Source: Journal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 004::page 41309
    Author:
    A. Khalvatti
    ,
    N. W. Mureithi
    ,
    M. J. Pettigrew
    DOI: 10.1115/1.4002181
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In operating shell-and-tube heat exchangers, tube vibration induced by cross-flow can be a serious problem. The region of concern in steam generators is the upper most U-bend region where the flow crosses a large number of tubes, which also cause significant hydraulic resistance. This hydraulic resistance forces the flow to change direction. From a fluidelastic instability point of view, the tube bundle is excited by oblique cross-flow. A secondary consequence of change in flow direction is a change in the flexibility direction of the tubes relative to the oncoming flow direction at different locations within the U-bend region. It is this somewhat simpler problem that is studied in this work. The effect of array flexibility direction on the fluidelastic instability phenomenon in a rotated-triangular tube bundle is investigated for single phase flow as a starting point. The study consists of both experiments and theoretical analysis of a simplified single-flexible-tube array. Experimental tests are conducted in a wind tunnel on a reconfigurable tube bundle. The results show that fluidelastic instability is strongly dependent on the flexibility angle. The results also show that, generally, the elimination of bundle flexibility in the direction transverse to the flow has a strong stabilizing effect on the tube bundle. The effect is, however, nonlinearly related to flexibility angle. In the second part of this work, the quasi-steady fluidelastic analysis is adapted for a single tube (within a rigid array), flexible in a single but arbitrary direction relative to the flow and subjected to cross-flow. The fluid-force expressions are rewritten to account for an arbitrary tube flexibility direction relative to the approaching flow. In the process, a simplified, flexibility direction dependent, one degree-of-freedom equation is obtained. The model is then evaluated against measured experimental data. This evaluation shows that the predicted critical flow velocity for fluidelastic instability is in qualitative agreement with experimental results, at least in the trend on the effect of varying the flexibility angle. At the same time, the model sheds some light on the role played by the flexibility angle in determining the overall fluid-structure damping underlying the observed stability behavior.
    keyword(s): Stability , Flow (Dynamics) , Plasticity AND Vibration ,
    • Download: (2.048Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Preferential Flexibility Direction on Fluidelastic Instability of a Rotated Triangular Tube Bundle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144670
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorA. Khalvatti
    contributor authorN. W. Mureithi
    contributor authorM. J. Pettigrew
    date accessioned2017-05-09T00:40:32Z
    date available2017-05-09T00:40:32Z
    date copyrightAugust, 2010
    date issued2010
    identifier issn0094-9930
    identifier otherJPVTAS-28534#041309_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144670
    description abstractIn operating shell-and-tube heat exchangers, tube vibration induced by cross-flow can be a serious problem. The region of concern in steam generators is the upper most U-bend region where the flow crosses a large number of tubes, which also cause significant hydraulic resistance. This hydraulic resistance forces the flow to change direction. From a fluidelastic instability point of view, the tube bundle is excited by oblique cross-flow. A secondary consequence of change in flow direction is a change in the flexibility direction of the tubes relative to the oncoming flow direction at different locations within the U-bend region. It is this somewhat simpler problem that is studied in this work. The effect of array flexibility direction on the fluidelastic instability phenomenon in a rotated-triangular tube bundle is investigated for single phase flow as a starting point. The study consists of both experiments and theoretical analysis of a simplified single-flexible-tube array. Experimental tests are conducted in a wind tunnel on a reconfigurable tube bundle. The results show that fluidelastic instability is strongly dependent on the flexibility angle. The results also show that, generally, the elimination of bundle flexibility in the direction transverse to the flow has a strong stabilizing effect on the tube bundle. The effect is, however, nonlinearly related to flexibility angle. In the second part of this work, the quasi-steady fluidelastic analysis is adapted for a single tube (within a rigid array), flexible in a single but arbitrary direction relative to the flow and subjected to cross-flow. The fluid-force expressions are rewritten to account for an arbitrary tube flexibility direction relative to the approaching flow. In the process, a simplified, flexibility direction dependent, one degree-of-freedom equation is obtained. The model is then evaluated against measured experimental data. This evaluation shows that the predicted critical flow velocity for fluidelastic instability is in qualitative agreement with experimental results, at least in the trend on the effect of varying the flexibility angle. At the same time, the model sheds some light on the role played by the flexibility angle in determining the overall fluid-structure damping underlying the observed stability behavior.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Preferential Flexibility Direction on Fluidelastic Instability of a Rotated Triangular Tube Bundle
    typeJournal Paper
    journal volume132
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4002181
    journal fristpage41309
    identifier eissn1528-8978
    keywordsStability
    keywordsFlow (Dynamics)
    keywordsPlasticity AND Vibration
    treeJournal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian