YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement of Decompression Wave Speed in Rich Gas Mixtures at High Pressures (370 bars) Using a Specialized Rupture Tube

    Source: Journal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 005::page 51303
    Author:
    K. K. Botros
    ,
    R. J. Eiber
    ,
    J. Geerligs
    DOI: 10.1115/1.4001438
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Measurements of decompression wave speed in conventional and rich natural gas mixtures following rupture of a high-pressure pipe have been conducted. A high-pressure stainless steel rupture tube (internal diameter=38.1 mm and 42 m long) has been constructed and instrumented with 16 high frequency-response pressure transducers mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures of 33–37 MPa-a and a temperature range of 21–68°C. The experimentally determined decompression wave speeds were compared with both GASDECOM and PIPEDECOM predictions with and without nonequilibrium condensation delays at phase crossing. The interception points of the isentropes representing the decompression process with the corresponding phase envelope of each mixture were correlated with the respective plateaus observed in the decompression wave speed profiles. Additionally, speeds of sound in the undisturbed gas mixtures at the initial pressures and temperatures were compared with predictions by five equations of state, namely, BWRS, AGA-8, Peng–Robinson, Soave–Redlich–Kwong, and Groupe Européen de Recherches Gaziéres. The measured gas decompression curves were used to predict the fracture arrest toughness needed to assure fracture control in natural gas pipelines. The rupture tube test results have shown that the Charpy fracture arrest values predicted using GASEDCOM are within +7% (conservative) and −11% (nonconservative) of the rupture tube predicted values. Similarly, PIPEDECOM with no temperature delay provides fracture arrest values that are within +13% and −20% of the rupture tube predicted values, while PIPEDECOM with a 1°C temperature delay provides fracture arrest values that are within 0% and −20% of the rupture tube predicted values. Ideally, it would be better if the predicted values by the equations of state were above the rupture tube predicted values to make the predictions conservative but that was not always the case.
    keyword(s): Pressure , Temperature , Waves , Mixtures , Rupture , Toughness , Measurement , Fracture (Process) AND Delays ,
    • Download: (1.766Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement of Decompression Wave Speed in Rich Gas Mixtures at High Pressures (370 bars) Using a Specialized Rupture Tube

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/144647
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorK. K. Botros
    contributor authorR. J. Eiber
    contributor authorJ. Geerligs
    date accessioned2017-05-09T00:40:28Z
    date available2017-05-09T00:40:28Z
    date copyrightOctober, 2010
    date issued2010
    identifier issn0094-9930
    identifier otherJPVTAS-28535#051303_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/144647
    description abstractMeasurements of decompression wave speed in conventional and rich natural gas mixtures following rupture of a high-pressure pipe have been conducted. A high-pressure stainless steel rupture tube (internal diameter=38.1 mm and 42 m long) has been constructed and instrumented with 16 high frequency-response pressure transducers mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures of 33–37 MPa-a and a temperature range of 21–68°C. The experimentally determined decompression wave speeds were compared with both GASDECOM and PIPEDECOM predictions with and without nonequilibrium condensation delays at phase crossing. The interception points of the isentropes representing the decompression process with the corresponding phase envelope of each mixture were correlated with the respective plateaus observed in the decompression wave speed profiles. Additionally, speeds of sound in the undisturbed gas mixtures at the initial pressures and temperatures were compared with predictions by five equations of state, namely, BWRS, AGA-8, Peng–Robinson, Soave–Redlich–Kwong, and Groupe Européen de Recherches Gaziéres. The measured gas decompression curves were used to predict the fracture arrest toughness needed to assure fracture control in natural gas pipelines. The rupture tube test results have shown that the Charpy fracture arrest values predicted using GASEDCOM are within +7% (conservative) and −11% (nonconservative) of the rupture tube predicted values. Similarly, PIPEDECOM with no temperature delay provides fracture arrest values that are within +13% and −20% of the rupture tube predicted values, while PIPEDECOM with a 1°C temperature delay provides fracture arrest values that are within 0% and −20% of the rupture tube predicted values. Ideally, it would be better if the predicted values by the equations of state were above the rupture tube predicted values to make the predictions conservative but that was not always the case.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurement of Decompression Wave Speed in Rich Gas Mixtures at High Pressures (370 bars) Using a Specialized Rupture Tube
    typeJournal Paper
    journal volume132
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4001438
    journal fristpage51303
    identifier eissn1528-8978
    keywordsPressure
    keywordsTemperature
    keywordsWaves
    keywordsMixtures
    keywordsRupture
    keywordsToughness
    keywordsMeasurement
    keywordsFracture (Process) AND Delays
    treeJournal of Pressure Vessel Technology:;2010:;volume( 132 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian